2000

Enhanced Reference Stress Method for LBB Analysis

Abstract

This paper proposes the enhanced reference stress (ERS) method to estimate the elastic-plastic *J*integral and crack tip opening displacement (COD) for circumferential through-wall cracked pipes. To validate the proposed COD estimation equations, the results from published pipe test data are compared with the proposed ones. Furthermore, the *J*-integral and CODs predicted using the proposed method are also compared with those of based on three dimensional elastic-plastic finite element analyses. The results show good agreement with pipe test data and the 3-D FE data. The present results provide confidence in applying the proposed ERS method to the Leak-before-Break analysis.

(Leak-before-Break; LBB) 가 . LBB (Elastic-Plastic Fracture Mechanics; EPFM) 가 • J-LBB EPFM (Crack Opening Displacement; COD) J-COD (engineering estimation scheme), , 가 가 . 가 가 GE/EPRI [1] (reference stress method)[2] **GE/EPRI** . 가 Ramberg-Osgood (curve fitting) _ 가 [3]. GE/EPRI 가 R6 가 [4] 가 . 가 (plastic limit load) COD J-. COD (Enhanced Reference Stress; ERS) J-, 3 가 . 가 GE/EPRI[1,5] **2. ERS** COD 가 **J**-2.1 J-COD 가 J-COD 가 2 가 2 1 . , 2.1.1 2 가 2 *J*-가 $\frac{J}{J_e} = \frac{E\boldsymbol{e}_{ref}}{\boldsymbol{s}_{ref}} + \frac{1}{2} \frac{L_r^2 \boldsymbol{s}_{ref}}{E\boldsymbol{e}_{ref}}$ (1) , J_e J $oldsymbol{s}_{\mathit{ref}}$. **e**_{ref} , L_r

1.

Fig. 1 Circumferential through-wall cracked pipes under axial tension and under bending

$$L_r = \boldsymbol{s}_{ref} / \boldsymbol{s}_y = P / P_o^* = M / M_o^*$$
⁽²⁾

, *P M*

•

,
$$P_o^* = M_o^*$$
 Fig. 1
(P_L) (M_L)

(optimised reference load) .

•

$$P_o^* = \boldsymbol{g}(\boldsymbol{q})P_L \quad ; \quad \boldsymbol{M}_o^* = \boldsymbol{g}(\boldsymbol{q})\boldsymbol{M}_L \tag{3}$$

$$g(q) = 0.82 + 0.75 \left(\frac{q}{p}\right) + 0.42 \left(\frac{q}{p}\right)^2 \text{ for } q/p \le 0.5$$
(4)

$$P_L = 2R_m t \boldsymbol{s}_y \left[\boldsymbol{p} - \boldsymbol{q} - 2\sin^{-1} \left(\frac{1}{2} \sin \boldsymbol{q} \right) \right]$$
(5)

$$M_{L} = 4R_{m}^{2} t \boldsymbol{s}_{y} \left[cos\left(\frac{\boldsymbol{q}}{2}\right) - \frac{1}{2} sin\boldsymbol{q} \right]$$
(6)

2 COD 가

$$\frac{\boldsymbol{d}}{\boldsymbol{d}_{e}} = \begin{cases} \frac{E\boldsymbol{e}_{ref}}{\boldsymbol{s}_{ref}} + \frac{1}{2} \frac{L_{r}^{2} \boldsymbol{s}_{ref}}{E \boldsymbol{e}_{ref}} & for \quad 0 \le L_{r} \le 1\\ \left(\frac{\boldsymbol{d}}{\boldsymbol{d}_{e}}\right)_{L_{r}=1} (L_{r})^{n_{1}-1} & for \quad 1 < L_{r} \end{cases}$$
(7)

,
$$\boldsymbol{d}_{e}$$
 COD $(\boldsymbol{d}/\boldsymbol{d}_{e})_{L_{r}=1}$ $L_{r}=1$ $(\boldsymbol{d}/\boldsymbol{d}_{e})$
(7) 7 n_{1} .

$$n_{1} = \frac{\ln\left[\left(\boldsymbol{e}_{u,t} - \boldsymbol{s}_{u,t}/E\right)/0.002\right]}{\ln\left[\boldsymbol{s}_{u,t}/\boldsymbol{s}_{y}\right]}$$
(8)

•

•

, $\boldsymbol{s}_{u,t}$ $\boldsymbol{e}_{u,t}$

(true tensile strength)

2.1.2 1 가

(lower bound)

.

$$\frac{J}{J_e} = \left[\frac{1}{\left(1 - 0.14L_r^2\right)\left\{0.3 + 0.7\exp\left(-0.65L_r^6\right)\right\}}\right]^2$$
(9)

1 COD 가

$$\frac{d}{d_e} = \begin{cases} 1 + \frac{1}{2}L_r^2 & for \quad L_r < 1\\ \frac{3}{2}(L_r)^{n_2 - 1} & for \quad L_r \ge 1 \end{cases}$$
(10)

, n_{2}

$$1/n_2 = 0.629 - 1.536 \left(\mathbf{s}_y / \mathbf{s}_u \right) + 1.723 \left(\mathbf{s}_y / \mathbf{s}_u \right)^2 - 0.814 \left(\mathbf{s}_y / \mathbf{s}_u \right)^3$$
(11)

	(10)		(7	')			
LBB		1			가	2	
,	1	2	J-			, COD	

2.2 ERS J- COD 가

		J-	COD	가			[2]
			ERS	J-	CO	DD	가

 $(\boldsymbol{s}_{y}/\boldsymbol{s}_{u})$

2.2.1 가

가 [2,4].

.

.

.

$$\boldsymbol{s}_{ref} = \left(\frac{P}{P_L}\right) \boldsymbol{s}_y = \left(\frac{M}{M_L}\right) \boldsymbol{s}_y \tag{12}$$

 $, \begin{array}{cc} P_L & M_L & (5) \\ \hline 7 \\ \end{array}$ (6) J-フト COD [6]. . (3) GE/EPRI . 가 P_o^* (3) • M_o^* **GE/EPRI** J-COD (h_1, h_2) 7 • COD J-) ア・. ,

2.2.2

COD GE/EPRI [3]. , GE/EPRI LBB COD J-(global parameter) 가 , COD (local parameter) . . J-가 COD . LBB 가 COD • COD 가 가 -. $\frac{\boldsymbol{e}}{\boldsymbol{e}_{p0.2}} = \left(\frac{\boldsymbol{s}}{\boldsymbol{s}_{y}}\right)^{n} \quad for \quad \boldsymbol{s} \geq \boldsymbol{s}_{y}$ (13) , **e**_{p0.2} **s**_y 0.2% (8) 0.2% (13) 가 $n \mathbf{s}_y / \mathbf{s}_u$ 2.2.3 **GE/EPRI** (a_e) COD 가. R6가 2 [4] COD 가 . $\boldsymbol{W} = \frac{1}{2} \frac{L_r^2 \boldsymbol{s}_{ref}}{E \boldsymbol{e}_{ref}}$ (14) (14) (7) Kastner [8] Irwin , Wüthrich [9] Dugdale (14) . 가 가 . J-3. **GE/EPRI** COD

3.1

3.1.1

						SA312
TP304	SA312 TP316	. SA312 TP304	Ļ		50	
	(quasi-static)	, SA312 TP316	20	288		

. Fig. 2~Fig. 4

3.1.2

Fig. 1				
355.6mm, 35.7mm	, R_m/t	4.48		12.5%(q
/ p =0.125) 40%(q / p =0.4)	가	가		

3.1.3

Fig. 5 1/4ABAQUS , 20 [10] (20-nodes isoparametric brick reduced integration element) 936 , (small strain analysis) 2 가 Fig. 2~Fig. 4 6가 J-COD .

3.2 GE/EPRI

GE/EPRI	J-	COD	-	
	Ramberg-Osgood			n

$$\frac{\mathbf{e}}{\mathbf{e}_o} = \frac{\mathbf{s}}{\mathbf{s}_o} + \mathbf{a} \left(\frac{\mathbf{s}}{\mathbf{s}_o} \right)^n \tag{15}$$

.

Ramberg-Osgood 가, GE/EPRI J- COD 가

Table 1

Table 1 Material properties for the analyses							
	TP304 (50)	TP316 (288)	TP316 (20)				
E (GPa)	204	190	206				
s _y (MPa)	269	165	234				
s_u (MPa)	559	455	545				
п	0.3	0.3	0.3				

1000 800 600 Stress, MPa 400 Test data Fit A (Entire curve) 200 Fit B (~ 5%) ·· Fit C (0.1%~0.8 e 0.0 0.1 0.2 0.3 0.4 0.5 Strain

Fig. 2 Stress-strain curve and three different fitting results for SA312 TP304 (50)

Fig. 3 Stress-strain curve and three different fitting results for SA312 TP316 (288)

Table 2 Ramberg-Osgood curve-fitting results TP304 TP316 TP316 (50) (288) (20) а п а п а п Entire curve 7.33 3.52 8.42 2.92 10.23 2.96 (Fit A) Up to 5% 5.97 4.30 5.76 4.11 3.39 4.72 (Fit B) 0.1%- $0.8 e_{u}$ 4.22 4.72 6.26 3.46 4.77 3.82

(Fit C)

Fig. 4 Stress-strain curve and three different fitting results for SA312 TP316 (20)

Fig. 5 A 3-D FE mesh for the circumferentially through-wall cracked pipe

Loading	Test No.	Material	D _o (mm)	t (mm)	R_m/t	q/p	Temp. (°C)
Pure	GE/1/B	304 SS	114.3	8.6	6.12	0.25	20
	GE/3/B	304 SS	114.3	8.6	6.12	0.5	20
	NRC/4111/1	A333 Gr. 6	114.3	8.9	5.93	0.37	288
Dending	4.3-1*	STS-49	763.5	38.2	9.5	0.166	300
	3.3-1*	STS-410	166.0	14.5	5.22	0.166	300
Tension	GE/3/90/T	304 SS	114.3	8.6	6.12	0.25	20
Pressure	4121-1*	304 SS	168.1	12.9	6.02	0.386	288

Table 3 Summary of pipe test data

* These data are extracted from (ref. 14). All other data are from (ref. 3).

$$J = \frac{K^2(a_e)}{E'} + \boldsymbol{as}_o \boldsymbol{e}_o R_m (\boldsymbol{p} - \boldsymbol{q}) \frac{\boldsymbol{q}}{\boldsymbol{p}} \cdot h_1 \cdot \left[\frac{M}{M_o} \right]^{n+1}$$
(16)

$$\boldsymbol{d} = \frac{4Ma_e}{\boldsymbol{p}\boldsymbol{R}_m^2 t E} \cdot V_1(a_e) + \boldsymbol{a}\boldsymbol{e}_o \boldsymbol{a} \cdot \boldsymbol{h}_2 \cdot \left[\frac{M}{M_o}\right]^n \tag{17}$$

$$M_o = 4\mathbf{s}_o R_m^2 t \left[\cos\left(\frac{\mathbf{q}}{2}\right) - \frac{1}{2}\sin\mathbf{q} \right]$$
(18)

[1,5]. COD *J*-(effective crack length)

$$a_{e} = a + \frac{1}{\mathbf{bp}} \left(\frac{n-1}{n+1} \left[\frac{K(a)}{\mathbf{s}_{o}} \right]^{2} \left[1 + \left(\frac{M}{M_{o}} \right)^{2} \right]^{-1}$$
(19)

b=2

b=2 , **b**=6

(stress intensity

•

.

[5].

4.

,

4.1

	COD	가				
[3,14]			Table 3	. Fig. 6~Fig	. 12	
COD	가		COD			
			-	(7)	2	가

Fig. 6 Comparison of the COD predictions with pipe test data (GE/1/B, See Table 3)

Fig. 7 Comparison of the COD predictions with pipe test data (GE3/B, See Table 3)

Fig. 8 Comparison of the COD predictions with pipe test data (NRC/4111/1, See Table 3)

Fig. 9 Comparison of the COD predictions with pipe test data (GE/3/90/T, See Table 3)

Fig. 10 Comparison of the COD predictions with pipe test data (4.3-1, See Table 3)

Fig. 11 Comparison of the COD predictions with pipe test data (3.3-1, See Table 3)

Fig. 12 Comparison of the COD predictions with pipe test data (4121-1, See Table 3)

	,		가
	(10) 1 가	. GE/EPRI	
"O"		ERS COD	1
	가 2	. Fig. 6~Fig. 9	
	GE/EPRI	ERS	
2	가		

4.2 GE/EPRI

Fig. 13~Fig. 20 J-COD ERS GE/EPRI (2가) 6 가 (3가) . SA312 TP316 가 SA312 TP304(50) SA312 TP316(20) , ERS 2 . GE/EPRI Table 2 Ramberg-Osgood J-COD , GE/EPRI Ramberg-Osgood GE/EPRI COD LBB .1-가 3 가 가 가 "Fit A" COD "Fit A" 가 , J-가 SA312 TP304 "Fit C' 가 가 , SA312 TP316 "Fit B' 가 가 GE/EPRI J-. COD 가 Ramberg-Osgood 가 ERS COD GE/EPRI J-, COD GE/EPRI ERS

Fig. 13 Comparison of FE J values with those from engineering estimation scheme for SA312 TP304 (50 , q/p = 0.4)

Fig. 14 Comparison of FE COD values with those from engineering estimation scheme for SA312 TP304 (50 , q/p = 0.4)

Fig. 15 Comparison of FE J values with those from engineering estimation scheme for SA312 TP316 (20 , q/p =0.4)

Fig. 16 Comparison of FE COD values with those from engineering estimation scheme for SA312 TP316 (20 , q/p = 0.4)

Fig. 17 Comparison of FE J values with those from engineering estimation scheme for SA312 TP304 (50 , q/p = 0.125)

Fig. 18 Comparison of FE COD values with those from engineering estimation scheme for SA312 TP304 (50 , q/p =0.125)

Fig. 19 Comparison of FE J values with those from engineering estimation scheme for SA312 TP316 (20 , q/p =0.125)

Fig. 20 Comparison of FE COD values with those from engineering estimation scheme for SA312 TP316 (20 , q/p =0.125)

5.

ERS COD 3 GE/EPRI . GE/EPRI *J*-COD Ramberg-Osgood . 가 가 . ERS GE/EPRI COD . GE/EPRI ERS LBB ERS COD ERS 가 763.52mm, 38.18mm STS-49 [14] • 16.6%(q / p = 0.166). (large strain analysis)

. Fig. 21

. ERS

					COD
	ER	S		COD	
			,	COD	
	가	가			
ERS	LBB			,	
ERS					

Fig. 21 Comparison of FE COD values with published pipe test data. For the FE COD results, two different options are also compared, small geometry change and large deformation options

[1] Kumar, V. and German, M.D., 1988, "Elastic-Plastic Fracture Analysis of Through-Wall and Surface Flaws in Cylinders," EPRI Report NP-5596.

[2] Ainsworth, R.A., 1984, "The Assessment of Defects in Structures of Strain Hardening Materials," Engineering Fracture Mechanics, Vol. 19, pp. 633-642.

[3] Kishida, K. and Zahoor, A., 1988, "Crack Opening Area Calculations for Circumferential Through-

Wall Pipe Cracks," EPRI Special Report NP-5959-SR.

[4] 1999, "R6: Assessment of the Integrity of Structures Containing Defects," Revision 3, British Energy Generation Ltd.

[5] 1995, "Refinement and Evaluation of Crack-Opening-Area Analyses for Circumferential Through-Wall Cracks in Pipes," NUREG/CR-6300, USNRC.

[6] Miller, A.G. and Ainsworth, R.A., 1989, "Consistency of Numerical Results for Power-Law Hardening Materials and the Accuracy of the Reference Stress Approximation for J," Engineering Fracture Mechanics, Vol. 32, pp. 237-247.

[7] Kim, Y.J., 1999, "Reference Stress Approximations for J and COD of Circumferential Through-Wall Cracked Pipes," EPD/GEN/REP/0462/99, British Energy Generation Ltd.

[8] Kastner, W., Röhrich, E., Schmitt, W. and Steinbuch, R., 1981, International Journal of Pressure Vessels and Piping, pp. 197-219.

[9] Wüthrich, C., 1983, "Crack Opening Areas in Pressure Vessels and Pipes," Engineering Fracture Mechanics, Vol. 18, pp. 1049-1057.

[10] 1999, "ABAQUS User's manual," Hibbitt, Karlson & Sorensen, Inc.

[11] Norris, D.M. and Chexal, B., 1987, "PICEP : Pipe Crack Evaluation Program," EPRI NP 3596-SR.

[12] 1996, "Pipe System Experiments with Circumferential Cracks in Straight-Pipe Locations," NUREG/CR-6389, USNRC.

[13] 1997, "Computer Program to Calculate Ramberg-Osgood Parameters for a Stress-Strain Curve," Pipe Fracture Encyclopedia, Vol. 1, Battelle.

[14] 1997, "Pipe Fracture Test Data," Pipe Fracture Encyclopedia, Vol. 3, Battelle.