A study on Calibration Reduction of Instrument Channels for Digital Limitation System

Abstract

A major objective of the study is prescribing instrument performance through analyzing on-line signals on instrument channels, deciding calibration period, reducing unnecessary maintenance, decreasing equipment damage. Through using neural networks for sensor signal validation method and SPRT for statistical performance evaluation method which is one of the most important issues in system performance analysis on instrument channels, detect drift and fault of instrument, deciding calibration period, a better system maintenance for instrument calibrations will be discussed.

1.

(I&C)

2000

, 가 (Time-Directed Maintenance) (Condition Directed 가 (Predictive Maintenance) Maintenance) . 가 [1]-[3]. 가 가 (Tech. Spec) . (non-service) 가 가 (RPS: Reactor Protection System)[4] 가 . , 2. 4 가 , CEAC(Control Element Assembly Calculator) 2 1-out-. 가 of-2 가 가 . 가 Model-Free . residual 가 가 Wald[1945] 가 SPRT (Sequential Probability Ratio Test) 1 , [5]-[7]

가

,

3.2

. 가

sigmoidal

$$\boldsymbol{s}\left(x\right) = \frac{1}{1 - e^{-x}}$$

4.2

,

.

$$M/m \cong 1.25$$
 , $M/f \cong 1.6$, $m/f \cong 1.3$

, 1. 1 5 6 4 6 5 2 4 5 3 5 4

5.

,

가

•

.

,

,

,

,

.

.

.

MATLAB

feed-

,

.

.

.

.

Wald[1945] SPRT(Sequential Probability Ratio Test) specified missed and false alarm probability[Upadhyaya, 1987] 가

가 , 가 가, (Fluctuation) 가 , X 가

$$\boldsymbol{e}_m = \boldsymbol{x}(t_m) - \hat{\boldsymbol{x}}(t_m) \tag{1}$$

$$E = \{e_{1}, e_{2}, e_{3}, \Lambda, e_{n}\} \qquad \text{SPRT}$$
test 7¹, , m_{0} s_{0}^{2} 7¹
7¹, m_{0} s_{0}^{2} 7¹
 $P_{0}(e, m_{0}, s_{0}^{2}) = \frac{1}{\sqrt{2ps_{0}^{2}}} \exp[-\frac{(e - m_{0})^{2}}{2s_{0}^{2}}]$ (2)
m s^{2}
 m s^{2}
 m s^{2}
 $P_{1}(e, m, s_{1}^{2})$ (Threshold)
7¹ SPRT Likelihood Ratio(LR)

LR

.

.

$$\boldsymbol{g}_{1} = \frac{P_{1}(\boldsymbol{e}, \boldsymbol{m}_{1}, \boldsymbol{s}_{1}^{2})}{P_{1}(\boldsymbol{e}, \boldsymbol{m}_{0}, \boldsymbol{s}_{0}^{2})}$$
(3)

· .

가 ,

LR

$$\boldsymbol{g}_{n} = \frac{P_{1}(\boldsymbol{e}_{1} / H_{1})P_{1}(\boldsymbol{e}_{2} / H_{1})\Lambda P_{1}(\boldsymbol{e}_{n} / H_{1})}{P_{0}(\boldsymbol{e}_{1} / H_{0})P_{0}(\boldsymbol{e}_{2} / H_{0})\Lambda P_{0}(\boldsymbol{e}_{n} / H_{0})} = \frac{P_{1}(E / H_{1})}{P_{0}(E / H_{0})}$$

$$H_{0} :$$

$$H_{1} :$$
(4)

LR Log Likelihood Ratio(LLR) I_n

$$I_{n} = \sum_{i=1}^{n} \ln \left[\frac{P(e_{i} / H_{1})}{P_{0}(e_{i} / H_{0})} \right]$$

$$I_{n} = I_{n-1} + \ln \left[\frac{P_{1}(e_{i} / H_{1})}{P_{0}(e_{i} / H_{0})} \right]$$

$$7^{\dagger} \qquad 7^{\dagger} \qquad$$

.

•

e

가 **m**₀ m e P_1 P₀ 가 가 , LLR . В А .

(8)

$$A = \ln\left[\frac{b}{1-a}\right], \quad B = \ln\left[\frac{1-b}{a}\right]$$
(10)

$$a : \qquad (FAP, False Alarm Probability)$$

$$b : \qquad (MAP, Missed Alarm Probability)$$

$$7^{\dagger} . .$$

y = 0.00018254x + 0.09240000

7.

.

, 4 50

4

SIMULINK

5 가 (가)

<u>ଅଅଟମ</u> ଅଭାଜ ଜାନାନା	Ch BI의 실측치와 에 측치의 E III 프	112		
79				
78				a
77				
76			an a	
75				ininta fin itstrantistik
74				
ne other: 0				-115

🚺 Resual2				
PPP M	6 1			
F				9 22
UU				
0				
.5L	i 05	1	i 15	2
Time offect: 0				

oss Fault Hypoths ରାଲେ କାରୋ				
嬼៷៳๒				
L		!		
ι Ω	05	1	15	2
offset: O				

6가 ()

,

,

,

		가	0		1		1
5		, residual		가			
	4			가	,		

.

		4		
가	가	(В)	

[7] - [8]

residual	가	,		"0"	가	residual	
			가		가		
		,				,	

.

🚮 가압기압력(Ch,8)의 실속치와 예	축치의 비교			
PPP # E = =				
162				
161				
150				
155 —				
150				_
157		į	1	
0 05		1.5		2.5 5
The online. U			00.01010	к 10
Mesidual 1	2. 2			
PPPMBDB				
5				
1)
5				
U US		1.5		
THE UNEL O				i€10
💋 Gross Fault Hypothsis1				_ D X
PPPHE				
3				
0.5				e feransen an er
D				
0 05	1	15		2
Time offset. O				×10

7 가 (가)

2

Probability Ratio Test)[9][10]

가 SPRT(Sequential

. , 가 가

- 8.
- [1] "On-line Monitoring of Instrument Channel Performance", EPRI(TR-104965), Nov. 1998
- [2] "Guidelines for Instrument Calibration Extension/Reduction", EPRI(TR-103335-RI), Oct. 1998
- [3] "Surveillance of Instrumentation Channels at Nuclear Power Plants", EPRI(NP-6067-V1, V2), Oct. 1998
- [4] "System Description for Plant Protection System for YGN3&4", 10487-SD-100

,

- [5] "Validation of Critical Signals for the Safety Parameter Display System", EPRI(NP-5066-M), Apr. 1987
- [6] D.Dong, T.J.McAvoy, "Sensor Data Analysis Using Autoassociative Neural Nets", Proceedings of World Congress On Neural Network, Vol 1, pp.161-166, San Diego June 5-9, 1994
- [7] , , KAERI/CM-030/95, , 1995.
- [8] M.A Kramer, "Autoassociative Neural Network", Tennessee, Knoxville, TN, May 24-26, 1995
- [9] K.Humenik, K.C.Gross, "Sequential Probability Ratio Tests for Reactor Signal Validation and Sensor Surveillance Application", Nucl. Sci. Eng., Vol. 105, pp.383-390, 1990
- [10] Katalin Kulacsy, "Futher Comments on the Sequential Probability Ratio Testing Methods" Ann. Nucl. Energy, Vol. 24, No.13, pp. 1005-1012, 1997

,

,