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Abstract

This paper presents a comparative evaluation of four convection schemes, QUICK, HLPA, HYBRID and
COPLA for the numerical analysis of unsteady stratified flow and conjugate heat transfer in a circular pipe.
All the schemes are formulated on a non-uniform, non-orthogonal grid so that they can be applicable to the
practical engineering flow calculations. The relative performances among the four schemes are investigated by
applying them to the numerical analysis of thermal stratification in a pressurizer surge line of pressurized
water reactor(PWR) plant. It is seen from the calculation results that all the bounded schemes might be
applicable for the solutions of thermal stratification problem in a horizontal circular pipe, the HLPA and
COPLA schemes results in nearly the same solution and are more superior both in accuracy and convergence
to the QUICK and HY BRID schemes.

1. Introduction

Development of an efficient convection scheme which is simple to implement but is free of false diffusion
has been one of the major tasks for the computational fluid dynamicists over the last two decades. The
classical lower-order schemes such as the upwind scheme, the hybrid central/upwind scheme and the power-
law scheme[1] are unconditionally bounded and highly stable but highly diffusive when the flow direction is
skewed relative to the grid lines. A simple remedy to overcome the false diffusion isto use a fine enough grid.
However, such a practice is not practical due to the requirement of excessive computer storage and
computational efforts, especially in the complex three-dimensional flow calculations.

Considerable efforts have been made toward the development of the improved differencing schemes,
mainly in two directions. One is raising the order of the scheme and the other is taking into account the
multidimensional nature of flow. The QUICK (Quadratic Upstream Interpolation for Convective Kinematics)
scheme[2] and the second-order upwind scheme[3] belong to the former approach and the skew-upwind
scheme[4] the latter. These schemes have been successful in increasing the accuracy of the solution, but all
suffer from the boundedness problem, resulting in an oscillatory solution behavior in regions of steep gradient
which can |ead to the numerical instability.

Recently Gaskell and Lau[5] developed a higher-order bounded scheme named SMART(Sharp and
Monotonic Algorithm for Realistic Transport) employing a composite approach in which the high resolution
schemes are combined with the lower-order bounded schemes. Leonard[6] also proposed a similar bounded
scheme of third-order accuracy named SHARP(Simple High-Accuracy Resolution Program). These two
schemes have resolved the forementioned boundedness problem without much deteriorating the accuracy of
the higher-order scheme. However, numerical experiments[7] have shown that these schemes need an under-
relaxation treatment at each of the control volume cell facesin order to overcome the oscillatory convergence
behaviors. This deficiency leads to the increase of the computer storage requirement, which may pose a
practical constraint to their use in the complex three-dimensional turbulent flow calculations.

Subsequent studies by Zhu and Rodi[8], Zhu[9], Shin and Choi[10] and Choi et al[11] have proposed
bounded convection schemes which are free of oscillatory convergence behaviors by choosing simple
characteristics in the normalized variable diagram, such as piecewise-linear profile (SOUCUP : Second-Order



Upwind-Central differencing-first-order UPwind), a parabolic profile(HLPA: Hybrid Linear/Parabolic
Approximation), a cubic profile (SMARTER: SMART Efficiently Revised) and a combination of piecewise
linear profiles (COPLA: Combination Piecewise Liner Approximation). These schemes are very simple to
implement and computationally cost effective. Recently, Choi and Lee[12] have evaluated some Higher-order
bounded convection schemes the numerical solutions of the pure convection of a scalar variable problem and
the laminar low in lid-driven cavity.

This study aims to perform the comparative evaluation of above four convection schemes, QUICK, HLPA
HYBRID and COPLA, in the thermally stratified flow cal culations under highly convective conditions. All the
schemes are formulated on a non-uniform, non-orthogonal grid so that they can be applicable to the practical
engineering flow calculations. The relative performances among the schemes are investigated by applying
them to the numerical analyses of thermal stratification in a pressurizer surge line of pressurized water
reactor(PWR) plant.

2. Mathematical Formulation

2.1 Governing Equations

To evaluate the applicability of four convection schemes considered herein to the numerical analysis of
thermally stratified flow in a horizontal circular pipe, the thermal stratification in a pressurizer surge line of
PWR plant [13-15] is chosen as atest problem in this study.

For this purpose, consider the same situation as in the work by Jo et al.[14], where hot fluid and cold fluid
flow in the PWR pressurizer surge line with a constant bulk velocity. The hot fluid occupies upper portion of
the pipe (see Fig. 1). Consequently this leads to the formation of two distinct fluid layers in the pipe. For
simplicity, it is assumed in this study that the flow is fully developed and the axial gradients of velocities and
temperature are negligible. Thus the dimensionless governing equation of this thermally stratified flow model
can be expressed in ageneralized coordinate system x' as[14],
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and the geometric coefficients ' represent the cofactors of fy'/9x’ in the Jacobian matrix of the coordinate

transformation y' = y'(x'), and J isthe determinant of the Jacobian matrix. In the above equations (1) - (4),
r, mp, k, c,, b,and g denote respectively density, dynamic viscosity, pressure, thermal conductivity,
the specific heat, volumetric coefficient of thermal expansion, and the gravitational acceleration. In addition,

u are the Cartesian velocity components in they' direction, W, is a specified constant bulk velocity of



stratified fluid in the x® direction, and r, istheinner radius of the pipe.

2.2 Initial and Boundary Conditions
As mentioned previously, the pipe wall is initialy at the temperature of cold fluid T, and is suddenly

exposed to hot fluid at T, . Theinitial conditionsfor this are given as

u =0(i=1,2) inthewhole solution domain, t=0 (6a)
T = 0inthepipewall and the cold fluid layer, t=0 (6b)
T= 1inthehot fluid layer, t=0 (6¢)

Because the solution domain is symmetrical thermally and geometrically, only half of the region is needed
to analyze. Thus along the symmetry line, the symmetry boundary conditions is applied for both velocity and
temperature. On the solid wall, the velocity of the fluids vanishes. For this situation the boundary conditions
are given by

u =0 (i= 1, 2) attheinner surface of the pipe, tfi0 (7a)

%:- @ at the outer surface of the pipe, tfi0 (7b)
where a=(r,-r)/r, and B =h(r,-r)/kg

u, =0 Mo, _ E:O at the symmetry plane, tfi0 (7¢)
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wheren is the outward normal to the surface of thewall, T, isthetemperature of environment outside the
pipe, h is heat transfer coefficient, k is the thermal conductivity of the pipe material, and r, is the outer
radius of the pipe.

2.3 Solution Domain Discretization

The governing equations (1) — (4) are solved numerically by a finite volume approach, requiring the
discretization of the solution domain into a finite number of quadrilateral control volume cell whose faces are
coincided with the non-orthogonal curvilinear coordinate lines.

A typical discretized domainis presented in Fig. 2, and also atypical control volume cell isshownin Fig. 3.
The values of all computed variables are stored at the geometric center of each control volume cell. The
interface between the hot and cold fluids is arranged here to align with a boundary between two rows of cells,
i.e.agridline.

To obtain the curvilinear non-orthogonal mesh shown in Fig. 2, it is assumed that the solution domain is the
cross-section of a pair of eccentric cylinders as shown in Fig. 4. The center of the inner solid cylinder is
coincided with the intersecting point of the fluid interface and the vertical symmetry line passing the center of
the pipe.

The outer cylinder is the pipe subjected to internally stratified flow, and the inner cylinder has such a small
size of diameter that the effect of its presence on the calculations can be negligible. Thus, the following
boundary conditions are applied to the outer surface of the inner solid cylinder with such an infinitesmal
diameter.

Ty, ﬂ_‘l’2:0 (i=1 2) at the outer surface of the infinitesimal inner cylinder, tf0 (8)

we X

Dislocating the inner solid cylinder either downward or upward can easily control the level of the fluid
interface with a horizontal straight-line configuration. The grid is generated by using an algebraic method. In
this study, the calculations are performed with a grid of 77" 62, forming 76 divisions in the circumferential
direction and 61 divisionsin theradial direction.

2.4 Momentum Interpolation Method

For a better resolution of flow field in complex geometries, recently several investigators have developed
various calculation methods of momentum equations employing the non-orthogonal, body-fitted coordinates.
Among these methods, the non-staggered, momentum interpolation method originally developed by Rhie and



Chow [16] is known to be one of the efficient methods and has been widely used because of its simplicity
feature of algorithm. In this method, the momentum equations are solved at the cell centered locations using
the Cartesian velocity components as dependent variables and the cell face velocities are obtained through the
interpolation of the momentum equations for the neighboring cell centered Cartesian velocity components. In
the present analysis, the modified version of the Rhie and Chow's scheme [15] is used to obtain a converged
solution of unsteady flow that isindependent of the size of time step.

2.5 Discretization of Transport Equations
In the finite volume approach, the transport equations, Egs. (1)- (4), are integrated over a control volume
shown in Fig. 3. Theresulting equation of ageneral dependent variable f canbewritten asfollows

DV b
(8p-8p.1) 5 +Fe- Ryt Fn- Fs=S DV +§ 9

where a,and a,, denote, respectively, the new and previous values of variable at the nodal point p. DV
and Dt mean the control volume and the time step, respectively. F represents the total flux of f across the
cell faceand S isthe sum of the non-orthogonal diffusion terms. Thetotal flux at the west face, for example,
can be written as follows with the diffusion term approximated by the central differencing scheme.

FW:CWfW - Dw(f P- fW) (10)
where
o 0
c,=(rV),, b,= Dix 11
(rv) éT - (11)

The evaluation of f,, plays akey role in determining the accuracy and the stability of numerical solutions.
For example, the f,, isevaluated asfollowswhen one uses the first-order upwind scheme

f =Ufy +Usfp 12
where U, and U, aretheindicators of thelocal velocity direction such that

Uy, =0.5(1+ U] /U,),
u,=1-Us U, 0

(13)

Incorporation of Eq. (10) and Eg. (12) and similar expressions for the other cell faces leads to following
general difference equation

Aot p=Acf e +Af W + AVf y + AF s+ (14

where
Ay, =D, +C U,
A =D - CU,
As=Dg +CVy’
Ay=D,- CV,
Ao=Ac + Ay + A+ A - STDV
b =§DV+§

(15

and S°, S arethelinearized source terms.

The details of implementation of the higher-order bounded schemes will be outlined in the following
chapter.



3. Higher-Order Bounded Schemes [12]

The current high-order bounded schemes are based on the variable normalization by Leonard[6] and the
convection boundedness criterion by Gaskell and Lau[5]. Consider, without loss of generality, the west face of
control volume. We introduce a normalized variable such that

fot-fu (16)
fo-fu

where the subscripts U and D denote the upstream and the downstream | ocations.
Eqg. (16) can be rewritten in terms of nodal point values
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Using the above upwind biased normalized variable, the following four schemes can be written asfollows:

Central difference scheme
fu=[- C)fw +CoJUy, +[Cif p +(1- C)Uy, (18)

First-order upwind scheme
fu=f WU+ U, (19)

Second-order upwind scheme

fu=- Cf WUy +@- Cof U,

(20)
QUICK scheme
-~ € - c,1-C - ® CLC,
f=g1+C)(A- Cr)fy +C2§- gw_@' + eC2 A+Cy)f p +(1- Cz)gl' A:\:Uw (21)
e 1+Cz A @ 1- Cz +C3m
where
_ DXy _ DXy _ DXy
1 » Cp v G (22)
DXy + DXy DX\ +DXp DX, +DXg

are the geometric interpolation factors defined in terms of the size of control volume cell. For example, is the
size of control volume around the calculation point P and is defined as
DXp =WP + Pe (23)

The normalized diagrams for these well-known schemes(U ,, >0) are shown in Fig. 5.

Gaskell and Lau[5] formulated following convection boundedness criterion. Define a continuous increasing
function or union of piecewise continuous increasing function F relating the modeled normalized face value

fAWto the normalized upstream nodal value fAW U, >0), that is fAW:F(fAW). Then a finite difference
approximation to fAW isbounded if
(i) for 0£f,, £1, Fisbounded below by the function f,=f,, and above by unity and passes through the
points (0,0) and (1,1);
(ii) for f,, <0,f,, >1, Fisequal to f,

The convection boundedness criterion is a necessary and sufficient condition for achieving computed
boundedness if only three neighboring upstream nodal values are used to approximate representation of the



convection boundedness criterion is shown in Fig. 6.

According to Leonard[6], for any(in general non-linear) characteristics in the normalized variable
diagram(Fig. 5),
(i) passing through Q is necessary and sufficient for second-order accuracy
(i) passing through Q with a slope of 0.75(for a uniform grid) is necessary and sufficient for third-order
accuracy.

The horizontal and vertical coordinates of point Q in the normalized variable diagram and the scope of the
characteristics at the point Q for preserving the third order accuracy for a non-uniform grid can be obtained by
asimple algebra using Egs. (18)-(21).

Xo= <, Ups+ 1-C U,
C,+GC, 1- C,+Cq

YQ — CZ (1+Cl)Uv+\-l + (1' CZ)(1+ C3) U\;v (24)
C +GC, 1- C,+C,

S =(1+Cy)(A- C)Uy, +Cy(1+ Cy)U,,

For auniform grid, X,=0.5, Y,=0.75 and &,=0.75 Following the above criteria by Gaskell and Lau[5]

and by Leonard[6], one may choose several bounded characteristics in the normalized variable diagram whose
order of accuracy is determined by the shape of the characteristics. Following are four simple possibilities
which ensure the second or third-order accuracy.

The HLPA scheme
In this scheme, the normalized face value is approximated by a combination of linear and parabolic
characteristics passing through the point, O, Q and P in the normalized variable diagram

f,=a,+bfc+cf2 OL£fc£1l

=f¢ otherwise

(25)

where
a,=0
by =(Yo- X3)/(Xq - X3) (26)
cw=(Xq- Yo) (Xq - X3)

Zhu[9] developed this scheme on the assumption of uniform grid( in this case), a,=0,h,=0,¢c,=-1).The

original scheme is further extended for use on the non-uniform grid in the present study. This scheme is
second-order accurate.

The COPLA scheme
Another possible way of devising a third-order accurate scheme is to employ a composite of piecewise

linear characteristics in which the QUICK schemeis employed inarange of 05X, £fAC £15X,, . This scheme

is similar to the SMART scheme[5], but is free of convergence oscillation. Such a scheme was proposed by
Choi et al.[11] employing following characteristicsin the normalized variable

fu=ay+bfc OEfc£05X,
=, +dfc  05Xo£fc£15X, -
=, +ff ¢ 15XqEfc £l

:fAC otherwise

where



a,=0

by =(2Y - $Xo)/ X

Cu=Yo - SHXo

du=5

€, =(3Xo - 2Y5- §X)/(3Xq- 2)
£y =(2Yg + SoXg - 2/(3Xq - 2)

(28)

The normalized variable diagrams for the higher-other bounded schemes considered in the present study are
giveninFig. 7.

It is worthwhile mentioning here that the present bounded schemes are very similar to the shock capturing
schemes based on the Total Variational Diminishing flux limiters(TVD), which are widely used in the
compressible flow calculations. The SOUCUP scheme is similar to the MINMOD(MINimum MODulus)
scheme of Roe[17] and the HLPA scheme is similar to the CLAM(Curved Line Advection Method) scheme of
Van Leer[18]. The implementation of the higher-order bounded schemes is quite simple. We note that the
forementioned four bounded schemes employ very similar forms of characteristics in the normalized variable
diagram. They differ only in the order of the characteristics and the values of the constants. Therefore, it
suffices to present the implementation of one scheme here, for example, the HLPA scheme. In the present
work, the higher-order schemes are implemented in a deferred correction way proposed by Khosla and
Rubin[19].

Eqg. (25) can be expressed in terms of the unnormalized variable

fw=%fw+(fp- Ww)eaw+(b+ 1 * wa
jf e gf gf WWﬂu (29)
T -
fo+@w-fe)éay 1 G Gy
+} ptfw E)eaw+(mv )gf _ng éfw_fE:wa

Given the switch factors
for U, >0:ay,=1 if [f p- 2\ +f y|<fw -

(30)
a; =0 otherwise
for U, <0:a,=1 if [y - 2fp+fc|<fy - gl @1
a,=0 otherwise
the unnormalized form of Eq. (29) can be rewritten as
fo=Uifw +Usf p+DF, (32)
where
. R~ o O, L8y Ty O U
w=Uosan(p WW)Ea +(by, - 1)§f z+cw<g‘f — :3
W\Ng P wwW g
2 (33
- €, . . an-f 0 _ad,-f .00
+Uwaw(fw-fE)‘?aw+(bw-l)§fP szﬂ‘wng fEi‘J
g w-lTeg w " EQH

After the evaluation of the additional term, the implementation of this scheme is the same as that of the
first-order upwind scheme. In the SOUCUP and LAPPA schemes, the constants are switched according to the

value of fACat the same cell face and for the same flow direction.

4, Application to the Test Problem

All the higher-order bounded schemes described in the previous chapter are implemented in a computer
code designed to solve the unsteady conjugate heat transfer and stratified flow in ahorizontal curved pipe. The



computer code uses a non-staggered grid arrangement and the SIMPLE[1] algorithm for pressure-velocity
coupling.

The geometry of the surge line and the computational parameters used here are the same as those in
references [14]. In operating reactors, the outer surface of the surge lineisinsulated with alittle heat loss. The
overall heat transfer coefficient of h=0.79 W/n?°C was used in the present analysis. The surge flow rate of

hot fluid in the line coming from the pressurizer was considered to be 1.26” 102 m®/sec. The interface levels
for this test problem is at height of 0.5 d, from the horizontal reference line passing through the bottom point
of inner wall surface, where d, isthe inner diameter of the surge line. For simplifying the calculations, the

fluids are assumed to be Newtonian with constant properties and the Boussinesq approximation is assumed to
be valid. And on the basis of these assumptions the variables of length, time, velocity and temperature are
non-dimensionalized, respectively, using the reference scalesof ., r/w,, Wy, and DT =(T, - T,).

The dimensionless time step used in the computations is 0.1. The iterative computation for each time step
ceases when the maximum of the absolute sum of dimensionless residuals of momentum equations or energy
equation, or pressure correction equation is less than 10 ®. Relaxation factors of 0.7 and 1.0 were used for
momentum equations and energy equation, respectively.

Fig. 8 displays the transient circumferential inner and outer wall temperature distributions by the four
different convection schemes. The angles of 0 degree and 180 degree on the figure mean the top and bottom
positions in the circumferential direction, respectively. Fig. 8 indicates for all the schemes that the wall
temperatures increase as the non-dimensional time increase and as the angle decreases. It can be seen that the
HYBRID scheme results in relatively more diffusive profiles than the other three convection schemes in the
top and bottom positions, and the solution of the QUICK scheme trends to be higher than that of other
schemes in the top position with slightly oscillatory solution. HLPA and COPLA schemes, however, resultsin
nearly the same solution at the all non-dimensional time in the top and bottom positions on the inner and outer
walls.

Fig. 9 presents the variations of the local Nusselt number as a function of the angle at six different elapsed
times for the four convection schemes. The average Nusselt number decreases to zero with elapsing of time
for all the schemes because the difference in temperature between the fluid and wall surface is decreased with
increasing of the elapsed times as shown in Fig. 10. Also, the solutions of Nusselt number for the four
convection schemes are nearly same, except that the QUICK scheme exhibits relatively high and oscillatory
value in the top position at the early stage of thermal stratification, as shownin Fig. 9(d).

Fig. 10 displays the transient isotherms for the four convection schemes. In the early stage, the temperature
gradient is very steep in the hot fluid region near the inner wall surface and the fluid interface, as can be
expected. As time elapses, the temperature difference between the top and bottom positions of the pipe wall
increases to a maximum value and then decreases to zero. As can be seen in the Fig. 10, all the schemes show
nearly the same patterns, except that the HYBRID scheme displays slightly different transient isotherms.
Although the HYBRID scheme takes a short time to reach at the steady-state condition, the scheme predicts
therelatively low temperatures as shown in Fig. 10.

Fig. 11 shows the transient top to bottom wall temperature differences both at the inner and outer wall
surfaces for the four convection schemes. Asshown in Fig. 11, the maximum value of temperature difference
is higher at the inner wall surface than that at the outer wall surface. For the three schemes except the
HYBRID scheme, it increases to their maximum values at the non-dimensional time of 1800 and then
decreases as the time elapses further. For the HY BRID scheme, the top to bottom temperature difference is
calculated to reach its maximum value at the non-dimensional time, 1000. Fig. 11 also shows that the HLPA
and COPLA schemes result in nearly the same solution and the maximum top to bottom temperature
difference is dependent on the convection scheme.

5. Conclusion

To evaluate the applicability of four convection schemes, QUICK, HLPA, HYBRID and COPLA to the
numerical analysis of thermal stratification problem in a horizontal circular pipe, in this study the thermal
stratification in a pressurizer surge line of PWR plant is chosen as a test problem and the relative
performances among the four schemes are investigated. The following important conclusions can be drawn
from the present analysis.

e All the bounded schemes might be acceptable for the applications to the solutions of thermal
stratification problemin ahorizontal circular pipe.
® QUICK scheme exhibits relatively high and oscillatory valuein the top position at the early stage



of thermal stratification.

e HYBRID scheme results in relatively more diffusive profiles than the other three convection
schemes in the top and bottom positions.

e TheHLPA and COPLA schemes resultsin nearly the same solution and are more superior both in
accuracy and convergence to the QUICK and HY BRID schemes.
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Fig. 9 The variation of thelocal Nusselt number(Nu).
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Fig. 10 Transient isotherms for the four convection schemes (COPLA, HLPA, HYBRID, QUICK)
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Fig. 11 Transient maximum wall temperature differences both on the inner and outer wall surfaces.



	분과별 논제 및 발표자

