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Abstract

Receding horizon control method is applied to the axial power distribution control in a pressurized water
reactor. The basic concept of receding horizon control is to solve on-line at each sampling instant an
optimization problem for a finite future and to implement the first optimal control input as the current control
input. It isasuitable control strategy for time varying systems. The reactor model used for computer simulations
is a two-point xenon oscillation model based on the nonlinear xenon and iodine balance equations and a one-
group, one-dimensional, neutron diffusion equation having nonlinear power reactivity feedback that adequately
describes axial oscillations and treats the nonlinearities explicitly. The reactor core is axially divided into two
regions, and each region has one input and one output and is coupled with the other region. Through some
numerical simulations, it was shown that the proposed control algorithm exhibits very fast tracking responses
dueto the step and ramp changes of axial target shape without any residual flux oscillations between the upper
and lower halves of the reactor core and also, works well in atime-varying parameter condition.

1. Introduction

Xenon oscillation tends to destabilize the operation of nuclear reactors because the thermal cross section of
xenon is extremely large and its effects in the reactor are delayed by the iodine precursor. Xenon distributionin a
reactor core can be calculated through changes in the axial and radial power distributions and core reactivity.
The fact that there is no direct way of measuring the xenon concentration often causes operators a great deal of
difficulty in anticipating the amplitude, direction, and rate of change of the xenon imbalance that is closely
related with the axial power shape.

Since the power distribution control has been one of the most challenging control problems in the nuclear
field, there have been extensive research activities in this area, especially using conventional optimal control
methods [1-9]. The receding horizon control methodology has received much attention as a powerful tool for the
control of industrial process systems[10-16]. The receding horizon control method has been applied little in the
nuclear field. The basic concept of the receding horizon control isto solve on-line an optimization problem for a
finite future at current time and to implement the first optimal control input as the current control input. As it
were, at the present time the behavior of the process over a horizon is considered. Using a model the process
response to changes in the manipulated variable is predicted. The moves of the manipulated variables are
selected such that the predicted response has certain desirable characteristics. Only the first computed change in
the manipulated variable is implemented. The procedure is then repeated at each subsequent instant. Thisis its
main difference from conventional control that uses a pre-calculated optimal control law. This method presents
many advantages over the conventional infinite horizon control because it is possible to handle input and state
(or output) constraints in a systematic manner during the design and implementation of the control. In particular,
it isasuitable control strategy for time varying systems. Although some tracking controllers use only the current
tracking command, the receding horizon control can achieve better tracking performance because future
commands are considered in addition to the current tracking command. Therefore, in this work the receding
horizon control method is applied to the power distribution control.

In this paper, the reactor core is modeled by being axially divided into two regions. Each region has one
input and one output and is coupled with the other region. The controlled processhas two inputs and two outputs,
and is described by a matrix polynomia model. To implement the proposed algorithm, the partial-length rods are
selected as the control actuator to return to the desired power shape.



A two-point (lower and upper halves) xenon oscillation model [17,20] is used for the purpose of computer
simulations. The validity of the model was also demonstrated for parameter identification and control purposes
[18]. Three different numerical simulations were performed in order to demonstrate the excellent performance of
the proposed controller for three cases: (a) track the axial target shape which changes by ramp and step, (b)
dampen the oscillations induced by a perturbation, and (c) follow the parameters change.
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Fig. 2. Schematic diagram of receding horizon control.

2. A Receding Horizon Controller
2.1 Problem Statement

The process to be controlled is described by the following Controlled Auto-Regressive and Integrated
Moving Average (CARIMA) model, which is widely used as a mathematical model of control design methods:

AG@ Y = B Yut- ) += Ca PO | @

where y T R" is the output, uT R™ is the control input, ? T R™ is a stochastic random noise vector
sequence with zero mean value, q’! is the backward shift operator, eg., g y(t) =y(t- 1), and D is defined
as D=1-q*. InEq. (1), A(@?') and C(q™!) ae n" n monic matrix polynomials as a function of the

backward shift operator q'1 and B(q'l) is an n” m matrix polynomial. For example, the n” n matrix



polynomial A(q™!) isasfollows:

A@hH=A, +A g +Aq2+K +A g™, )
where Ay, A;,L A, ae n’ n real matricesand nA isthe order of the matrix polynomial.
The basic idea of receding horizon control is to calculate a sequence of future control signals in such away

that it minimizes a multistage cost function defined over a prediction horizon. The associated performance index
isthe following quadratic function:
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where positive definite matrices Q and R are weighting matrices to penalize particular components of
(9 - W) and Du at certain future time intervals, respectively, and also, they are symmetric matrices, and w is
afuture setpoint or reference sequence for the output vector. y(t + j|t) isanoptimum | -step ahead prediction

of the system output on data up to time t; that is, the expected value of the output vector at time t if the past
input and output vectors and the future control sequence are known. N; and N, is the minimum and

maximum prediction horizons, respectively, and M is the control horizon. The prediction horizons mark the
limits of the instants in which it is desirable for the output to follow the reference. In order to obtain control
inputsit is necessary to minimize the cost function. To do this, the predicted outputs have to be first calculated as
afunction of past values of inputs and outputs and of future control signals. The control law is imposed by the
use of the control horizon concept that consists of considering that after a certain interval M < N, there is no

variation in the proposed control signals, thatis; Du(t+j-1)=0for j>M.

The receding horizon control method is to solve an optimization problem for a finite future at current time
and to implement the first optimal control input as the current control input. The procedure is then repeated at
each subsequent instant. Figure 1 shows this basic concept [12] and Figure 2 shows a schematic diagram of the
receding horizon control method. As it were, for any assumed set of present and future control moves, the future
behavior of the process outputs can be predicted over a horizon N, , and the M present and future control

moves (M £ N, ) are computed to minimize a quadratic objective function. Though M control moves are

calculated, only the first control move isimplemented. At the next period, new values of the measured output are
obtained, the control horizon is shifted forward by one step, and the same calculations are repeated. The purpose
of taking new measurements at each time step is to compensate for unmeasured disturbances and model
inaccuracy, both of which cause the system output to be different from the one predicted by the model.

At every time instant, receding horizon control requires the on-line solution of an optimization problem to
compute optimal control inputs over a fixed number of future time instants, known as the time horizon. The on-
line optimization can be typically reduced to either alinear program or a quadratic program.

I1.B. Design of a Receding Horizon Controller

The processoutput at time t + j can be predicted from the measurements of the output and input up to time
step t.The derivation of the optimal prediction is done by solving a Diophantine equation, whose solution can

be found by an efficient recursive algorithm. In this derivation, the most usual case when C(q™!) =1 v Will be
considered. The | -step-ahead prediction of the multivariable process output is derived below.

Multiplying Eq. (1) by DE; (1) fromtheleft gives

yt+i)-Ej(@ 2+ j) =F;(@y) + Ej(a)B(a)Du(t+j- D, 4
where E;(q"") and F;(q"") are the matrix polynomials satisfying
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and

A@ ™) = A@D. ®
Equation (5) is called the Diophantine equation and there exist unique matrix polynomials E; (q!) and
Fi (q!) of order j-1 and nA, respectively such that E ;o =Inn- By taking the expectation operator and
consideringthat E{? (t)} =0, theoptimal | -step-ahead prediction of y(t + j|t) satisfies

yt+jlt)=F;@y®+E;@ "B "but+j- 1, 9
where y(t+j|t)= E{y(t + j)|t}. E{y(t + j)|t} denotes an estimated value of the output at time step t+ |
based on al the data up to time step t. The output prediction can easily be extended to the nonzero mean noise
case by adding vector E; (q'l)E{?(t)} to prediction y(t+ j [t).

By making the matrix polynomia E;(q )B(q ") =H (@) +q 'H,(a’") with d(Hj(q‘l))< i, the
prediction equation can now be written as
Y+l =H;(@"Du(t+j-D+H,(aHDu(t- Y+ F(@ W), (10)
where d(H j(q‘l)) denotes the order of polynomial H;(g™").

The last two terms of the right hand side of Eq. (10) consist of past values of the process input and output
variables and correspond to the free response of the process considered if the control signals are kept constant,
while the first term only consists of future values of the control input signal and can be interpreted as the forced
response, that is: the response obtained when the initial conditions are zero y(t- j)=0,Du(t- j)=0 for

j =0,1, L [16]. Equation (10) can be rewritten as

Y+l =H (@ HDut+j- 1+f;, (12)
with f; =H jp(q'l)Du(t- 1) +F; (@ Yy(t) . Thenasetof N j-ahead output predictions can be expressed as

y=HDu+f, (12
where

~ ~ ~ ~ . ~ T
y=e+10" ye+2|9" L ye+il"T L yE+NjD)T|

6H, O L O L 04

& u
§H, He L 0 L of
EeM M O M M M
H=g U,
s Hi, L Ho L 0y
€M M M MO Ml

é a
N-1 HNZ L L L HOG

Du:[Du(t)T Dut+)T L Dut+j)T L Dut+N-3T|",

O A BT ST M

and

gt
H j(q_l) =aHa'.

i=0
If al initial conditions are zero, the free response f is zero. If aunit step is applied to the first input at time t;
thatis, Du=[10L 0]", the expected output sequence [J(t+1)" Y(t+2)" L §(t+N)"]" isequal to the first
column of matrix H . That is, the first column of matrix H can be calculated as the step response of the plant
when aunit step is applied to the first control signal.

The computation of the control input involves the inversion of an nN, " NN, matrix H that requires a

substantial amount of computation. If the control signal is kept constant after thefirst M control moves (that is,



Du(t+j)=0,,, for j>M), thisleads to the inversion of an nM "~ nM matrix that reduces the amount of
computation. If so, the set of predictions affecting the cost function can be expressed as
Yo =HDug +fg, (13)
where
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The cost function can be rewritten as
1 ~ 1 ~
J :E(HSmS +fS - WS)T Q(H SmS +fS - WS)+EDU1S- RI:l'IS’ (14)

where WS:[WS(t+N1|t)T w(t+N, +1]t)" L Ws(t+N2|t)T]T, Q=diag(Q,L ,Q) is a diagonal
matrix that consists of diagonal elements equal to Q,L ,Q, and R =diag(R,L ,R). Usually (5 =1 and
I?sz'l are used and nr iscalled aninput weighting factor.

The optimal control input can be expressed as
_~ _~ _1 _~
Du, = (HIQH,, +RJ "HIQ(w, - 1,). (15)
Because of the receding control strategy, only Du(t) is needed at instant t. Thus only the first m rows of the
matrix (HZ(SHS + ﬁ)' lHI@ have to be computed.

In order to obtain the control input, it is necessary to calculate the matrix H and the vector f . These

matrix and vector can be calculated recursively. From now on, the derivation will be described. By taking into
account a new Diophantine equation corresponding to the prediction for y(t+ j+1|t), Eqg. (5) can also be
rewritten asfollows:

lin =E (@A@Y +a UVF @), (16)
Subtracting Eg. (5) from Eq. (16) gives

Orn =[Ejea(@™) - Ej(@H]A@Y +q7 [a Fia(a™) - Fi@™)] (17)
Sincethematrix E (™) - E;(q'") isof order j, the matrix can be written as

Eia(@h)-Ej(@h)=G(aH+Gq’, (18)

where é(q'l) isan n” n matrix polynomia of order smaller or equal to j-1and G; isan n" n rea
matrix. By substituting Eq. (18) into Eq. (17)

On =G@ AWM +a|GIAWE Y +a'Fia(@h - Fi@™)] . (19
Since A(q'Y) is monic, it is easy to see that G(q'%) =0, . Therefore, from Eq. (18) the matrix E;.(q ™)
can be calculated recursively by

Eja(@h)=E@H+Gq’. (20)

The following expressions can easily be obtained from Eq. (19):
Gj=Fjo, (21)



and

Fj+1,i = FJ T G in+1 for i= O, L ,d(FJ +1) . (22)
Also, it can easily be seen that theinitial conditions for the recursion equation are given by
E,=lqps (23)
and
I:1 =q(l nn- A). (24)
Thevector f (freeresponse) can be computed by the following recursive relationship:
fia=all - A@™D)f; +B@HDu(t+ j), (25)

with fy =y(t) and Du(t+ j)=0,, for j3 0.

3. Axia Xenon Oscillation Model

An axia xenon oscillation model given in the literatures [17,20] for a pressurized water reactor is used to
demonstrate the proposed control algorithm. The two-point model was derived from the nonlinear xenon and
iodine balance eguations and a one-group, one-dimensional, neutron diffusion equation having nonlinear power
reactivity feedback. The total power of the reactor core is held constant even though the power density varies as
afunction of both time and position. The axial xenon oscillation model will be described below.

The one-dimensional diffusion equation with a prompt-power feedback is

pli@y, L&, (28-S Xox@ b (z1)-ap &, g 2zt =0, (26)
122 & Kk a
and the iodine and xenon balance equations are
ﬂy(zt)_ —3 (zt)- 1, y(z,t 2
e gg IO[:th( )- 1z, @7
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X(zt) _ & s +F Lo | f 28
m —§9|a J(Zt) g| y(Zt)- xX(z1) - s xf ox(z,) (21), (28)

where the parameters have their usual meanings, and f ,, X, and |, are the time independent steady-state
values of the flux, xenon concentration and iodine concentration, respectively and j (z,t), x(zt) and y(zt)

are their time varying amplitudes, respectively. The axial coordinate z is measured from the center of the
cylinder that is of height H . Two-term spatial, harmonic-series solutions are assumed for the axial flux, xenon,
and iodine distributions as follows:

j (z,t) =cospz/ H) + P(t)sin(2pz/ H) , (29)

X(z,t) = cospz/H) + X (t)sin(Zpz/H) , (30)
and

y(z,t) =cospz/H) +Y(t)sin(2pz/H) . (3D

The spatial averages of the fluxand the xenon and iodine concentrations for the lower half of the core are

M0 =1 PO 32

R0 = {1 X(0], 33
and

— 2

Ya () :E[l_ Y(t)]. (34)

The equations for the upper half of the core are

To(t) = p3[1+ PO)] . 35)



% (1) :p3[1+ X (1), 36)
and
Y(t) =p3[1+v(t)] . @37

An equation of the amplitude P(t) is derived and solved by maintaining a reactor as nearly critical as
possible using avariational estimate of the eigenvalues of the one-dimensional diffusion equation [17]:

- b,P(t)*+2(b, - b.)P(t)+b, =0, (39)
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The dynamic equations of the other amplitude functions X(t) and Y(t) are obtained by integrating Egs. (27)
and (28) over the two regions of the core and substituting Egs. (29) through (37) [17,20]:

dY(t) églaf Bo%ty-1,v(, “4
dX() 2 5 fo o ]
T_? P(t)+§? 9{(t) | X(0)- s «f o[P() + X (1)] . (49)

The detailed axial xenon oscnlatlon model isgivenintheliterature [17].
The one-group diffusion parameters of the foregoing dynamic equations are listed in Table 1. The &, is
expressed as the combination of absorption cross sections of the fuel, moderator, structure, and control poison.

Table 1. One-group diffusion parameters of the axial xenon oscillation model [17].

Parameter Vaue

fo 2.1 108 [cm 2 x5
Sy 2.6 10 ¥ [cm?l
ap 3.6” 10 *°[cn? :¢]
g, 0.061

Oy 0.003

g, 287 10°[s Y
Ix 209”10 %[ Y

D 0.375[cn

H 365.8[cn

8 0.65[cm 1]
na; 156 [cm ]

ER 1.523[cm’ ]




4. Application to the Axial Xenon Oscillation Model

The two-point xenon oscillation model has two inputs and two outputs that consist of inputs and outputs for
the lower and upper halves. Therefore, the control input is obtained from the first two rows of the following
equation:

TA S5TIuTA

DuS:(HSQHS+R) HIQw, -f,), (46)
where

wo =W+ N) Wyt +N) wo(t+N,+1) wyt+N+D) L wyt+N,) wt+N,)"

= the normalized target neutron flux
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=thevariation in absorber cross sections & ,, and & _, between two neighboring time steps,
subscripts'1' or '2' refer to the lower and upper halves of a core, respectively.

Since the nonlinear xenon oscillation model described above is inadequate to design the controller and a
linear mathematical model of the xenon oscillation model is used, a linearized model was obtained through the
linear identification of the nonlinear xenon oscillation model using a conventional parameter estimation
algorithm. The linearized model of Eq. (1) is asfollows:

AGY = él Ou e33529 10" 45865° 101U , €17501° 10" 299277 107U
3) 18 §16002” 101 -62402° 107 §1.0540° 102 - 46464 ° 107

,$50886 107 17375° 10* @uq 3, 610615 10" 17217 102U
811498 107 -33012° 107§  g§27151° 101 -18258 * 107

>('D)

625033 1071 -12697 © 10° Eﬂ5 e75821 102 475427 10 U -6

"€ 41570 107 -3806° 1020 & 241197 100 -21001° 1074

& 46042 45697 u 635566 -351800 , €202/ -21501u ., é11.267 -10612u .3
Y=g gte g te @ te g

€ao0a3 -456067 &asses awast I T&ome 215w I T&11266 10613 4
LE3F 30§, eT7AB 168 g

€363 -3658 Y 817160 -16886%0
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The tuning parameters used in numerical simulations are the prediction horizons N; and N, , the control

horizon M , the output and input weighting matrices (5 and R . Increasi ng the maximum prediction horizon
N, usually speeds up the step response of the closed loop system but induces an increase in overshoot, and the
longer the prediction horizon, the less precise the prediction of the process output. Also, a longer prediction
horizon increases the computational burden. Increasing the control horizon usually makes the system more active
and hence allows afast response to the system inputs. However, depending upon the value of the control horizon,
the closed loop system response may become oscillatory with alarge control horizon. The input weighting factor
i of the control sequence plays an important role in determining the behavior of the closed loop system. When
the factor decreases, the system can be unstable. As the weighting factor increases, the response become better
damped but is slowed down. In all simulations the following parameters are used:

N=3, M=2, Q=1,and R =10000" |



First, anumerical simulation was performed in order to observe the tracking performance of the proposed
controller for the axial target flux shape that changes by step or ramp. Figure 3 shows its performance. The
normalized target flux is changed by a step increase at t =10h and by a ramp decrease from t =60h. The
proposed controller tracks the target neutron flux without delay.
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Fig. 3. Performance of the proposed controller due to ramp and step changes of axial target shape.

Figure 4 shows how well this controller damps the oscill ations when some oscillations are induced externally.
A perturbation is initiated at t =10h suddenly as shown in Fig. 4b and lasts for 2.5h. Its amount is a 0.2%
change of absorber in the lower region at that time. Some free oscillations of the flux, xenon and iodine take
place without any controller action for 67.5h after the initiation of the perturbation as shown in Fig. 4a. The
proposed controller is activated at t =80h and stops the oscillations promptly. After that time, the normalized
neutron flux follows the axial target shape without any delay.
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Fig. 4. Performance of the proposed controller for the removal of free oscillations.

Figure 5 simulates the circumstances similar to Fig. 3. The difference is that a power reactivity coefficient
ap varies according to a ramp decrease and a step increase as a function of time (refer to Fig. 5c). The

parameter value is less than that of the first simulation (refer to Table 1 and Fig. 3). The reactor usually becomes

more unstable as the parameter decreases. But its performance is similar to the results of the first numerical
simulation.
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Fig. 5. Performance of the proposed controller due to ramp and step changes of axial target shape
(with parameter change).



5. Conclusions

A receding horizon control algorithm for the axial neutron flux shape control is presented. The concept of
receding horizon control is to solve an optimization problem for a finite future at current time and to implement
the first optimal control input as the current control input. The procedure is then repeated at each subsequent
instant. The proposed algorithm is demonstrated by using a two-point xenon oscillation model based on the
nonlinear xenon and iodine balance equations and a one-group, one-dimensional, neutron diffusion equation
having nonlinear power reactivity feedback. The proposed control algorithm tracks the step and ramp changes of
axial target neutron flux shape without any residual flux oscillations between the upper and lower halves of the
reactor core. Also, this controller shows good performance even under time-varying conditions and promptly
damps some oscillations induced by external means.

Other computer simulations had been performed under similar circumstances using the same xenon
oscillation model and are given in the literatures [19-20]. In the previous works, the reconstructive inverse
dynamics control and adaptive control methods had been used. The receding horizon controller shows better
response or better characteristicsthan the controllers of the previous works[19-20].
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