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Abstract

Receding horizon control method is applied to the axial power distribution control in a pressurized water
reactor. The basic concept of receding horizon control is to solve on-line at each sampling instant an
optimization problem for a finite future and to implement the first optimal control input as the current control
input. It is a suitable control strategy for time varying systems. The reactor model used for computer simulations
is a two-point xenon oscillation model based on the nonlinear xenon and iodine balance equations and a one-
group, one-dimensional, neutron diffusion equation having nonlinear power reactivity feedback that adequately
describes axial oscillations and treats the nonlinearities explicitly. The reactor core is axially divided into two
regions, and each region has one input and one output and is coupled with the other region. Through some
numerical simulations, it was shown that the proposed control algorithm exhibits very fast tracking responses
due to the step and ramp changes of axial target shape without any residual flux oscillations between the upper
and lower halves of the reactor core and also, works well in a time-varying parameter condition.

1. Introduction

Xenon oscillation tends to destabilize the operation of nuclear reactors because the thermal cross section of
xenon is extremely large and its effects in the reactor are delayed by the iodine precursor. Xenon distribution in a
reactor core can be calculated through changes in the axial and radial power distributions and core reactivity.
The fact that there is no direct way of measuring the xenon concentration often causes operators a great deal of
difficulty in anticipating the amplitude, direction, and rate of change of the xenon imbalance that is closely
related with the axial power shape.

Since the power distribution control has been one of the most challenging control problems in the nuclear
field, there have been extensive research activities in this area, especially using conventional optimal control
methods [1-9]. The receding horizon control methodology has received much attention as a powerful tool for the
control of industrial process systems [10-16]. The receding horizon control method has been applied little in the
nuclear field. The basic concept of the receding horizon control is to solve on-line an optimization problem for a
finite future at current time and to implement the first optimal control input as the current control input. As it
were, at the present time the behavior of the process over a horizon is considered. Using a model the process
response to changes in the manipulated variable is predicted. The moves of the manipulated variables are
selected such that the predicted response has certain desirable characteristics. Only the first computed change in
the manipulated variable is implemented. The procedure is then repeated at each subsequent instant. This is its
main difference from conventional control that uses a pre-calculated optimal control law. This method presents
many advantages over the conventional infinite horizon control because it is possible to handle input and state
(or output) constraints in a systematic manner during the design and implementation of the control. In particular,
it is a suitable control strategy for time varying systems. Although some tracking controllers use only the current
tracking command, the receding horizon control can achieve better tracking performance because future
commands are considered in addition to the current tracking command. Therefore, in this work the receding
horizon control method is applied to the power distribution control.

In this paper, the reactor core is modeled by being axially divided into two regions. Each region has one
input and one output and is coupled with the other region. The controlled process has two inputs and two outputs,
and is described by a matrix polynomial model. To implement the proposed algorithm, the partial-length rods are
selected as the control actuator to return to the desired power shape.



A two-point (lower and upper halves) xenon oscillation model [17,20] is used for the purpose of computer
simulations. The validity of the model was also demonstrated for parameter identification and control purposes
[18]. Three different numerical simulations were performed in order to demonstrate the excellent performance of
the proposed controller for three cases: (a) track the axial target shape which changes by ramp and step, (b)
dampen the oscillations induced by a perturbation, and (c) follow the parameters change.
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Fig. 1. Receding horizon control method.

Fig. 2.  Schematic diagram of receding horizon control.

2. A Receding Horizon Controller

2.1 Problem Statement

The process to be controlled is described by the following Controlled Auto-Regressive and Integrated
Moving Average (CARIMA) model, which is widely used as a mathematical model of control design methods:
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where nR∈y  is the output,  mR∈u  is the control input, mR∈?  is a stochastic random noise vector
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polynomial )( 1−qA  is as follows:
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where nAAAA ,,, 10 Λ  are nn×  real matrices and nA  is the order of the matrix polynomial.

The basic idea of receding horizon control is to calculate a sequence of future control signals in such a way
that it minimizes a multistage cost function defined over a prediction horizon. The associated performance index
is the following quadratic function:

( ) ( )∑ ∑
= =

−+∆−+∆++−++−+=
2

1 1

)1()1(
2
1

)()|()()|(̂
2
1 N

Nj

M

j

TT jtjtjttjtjttjtJ uRuwyQwy , (3)

where positive definite matrices Q  and R  are weighting matrices to penalize particular components of
( )wy −ˆ  and u∆  at certain future time intervals, respectively, and also, they are symmetric  matrices, and w  is

a future setpoint or reference sequence for the output vector. )|(̂ tjt +y  is an optimum j -step ahead prediction

of the system output on data up to time t ; that is, the expected value of the output vector at time t  if the past
input and output vectors and the future control sequence are known. 1N  and 2N  is the minimum and
maximum prediction horizons, respectively, and M  is the control horizon. The prediction horizons mark the
limits of the instants in which it is desirable for the output to follow the reference. In order to obtain control
inputs it is necessary to minimize the cost function. To do this, the predicted outputs have to be first calculated as
a function of past values of inputs and outputs and of future control signals. The control law is imposed by the
use of the control horizon concept that consists of considering that after a certain interval 2NM <  there is no

variation in the proposed control signals, that is: 0u =−+∆ )1( jt  for Mj > .

The receding horizon control method is to solve an optimization problem for a finite future at current time
and to implement the first optimal control input as the current control input. The procedure is then repeated at
each subsequent instant. Figure 1 shows this basic concept [12] and Figure 2 shows a schematic diagram of the
receding horizon control method. As it were, for any assumed set of present and future control moves, the future
behavior of the process outputs can be predicted over a horizon 2N , and the M  present and future control

moves ( 2NM ≤ ) are computed to minimize a quadratic objective function. Though M  control moves are

calculated, only the first control move is implemented. At the next period, new values of the measured output are
obtained, the control horizon is shifted forward by one step, and the same calculations are repeated. The purpose
of taking new measurements at each time step is to compensate for unmeasured disturbances and model
inaccuracy, both of which cause the system output to be different from the one predicted by the model.

At every time instant, receding horizon control requires the on-line solution of an optimization problem to
compute optimal control inputs over a fixed number of future time instants, known as the time horizon. The on-
line optimization can be typically reduced to either a linear program or a quadratic program.

II.B. Design of a Receding Horizon Controller

The process output at time jt +  can be predicted from the measurements of the output and input up to time

step t . The derivation of the optimal prediction is done by solving a Diophantine equation, whose solution can

be found by an efficient recursive algorithm. In this derivation, the most usual case when nnq ×
− = IC )( 1 , will be

considered. The j -step-ahead prediction of the multivariable process output is  derived below.

Multiplying Eq. (1) by )( 1−∆ qjE  from the left gives
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where )( 1−qjE  and )( 1−qjF  are the matrix polynomials satisfying
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and
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Equation (5) is called the Diophantine equation and there exist unique matrix polynomials )( 1−qjE  and

)( 1−qjF  of order 1−j  and nA , respectively such that nnj ×= IE 0, . By taking the expectation operator and

considering that { } 0)( =tE ? , the optimal j -step-ahead prediction of )|(̂ tjt +y satisfies
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where { }tjtEtjt )()|(̂ +=+ yy . { }tjtE )( +y  denotes an estimated value of the output at time step jt +
based on all the data up to time step t . The output prediction can easily be extended to the nonzero mean noise

case by adding vector { })()( 1 tEqj ?−Ε  to prediction )|(̂ tjt +y .

By making the matrix polynomial )()()()( 1111 −−−−− += qqqqq jp
j
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prediction equation can now be written as
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where ( ))( 1−qjHδ  denotes the order of polynomial )( 1−qjH .

The last two terms of the right hand side of Eq. (10) consist of past values of the process input and output
variables and correspond to the free response of the process considered if the control signals are kept constant,
while the first term only consists of future values of the control input signal and can be interpreted as the forced
response, that is: the response obtained when the initial conditions are zero 0u0y =−∆=− )(,)( jtjt  for

Λ,1,0=j [16]. Equation (10) can be rewritten as

jj jtqtjt fuHy +−+∆=+ − )1()()|(ˆ 1 , (11)

with )()()1()( 11 tqtq jjpj yFuHf −− +−∆= . Then a set of jN -ahead output predictions can be expressed as

fuHy +∆=ˆ , (12)
where
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If all initial conditions are zero, the free response f  is zero. If a unit step is applied to the first input at time t ;

that is, T][ 001u Λ=∆ , the expected output sequence TTTT Nttt ])(̂)2(̂)1(ˆ[ +++ yyy Λ  is equal to the first
column of matrix H . That is, the first column of matrix H  can be calculated as the step response of the plant
when a unit step is applied to the first control signal.

The computation of the control input involves the inversion of an 22 nNnN ×  matrix H  that requires a
substantial amount of computation. If the control signal is kept constant after the first M  control moves (that is,



1)( ×=+∆ mjt 0u  for Mj > ), this leads to the inversion of an nMnM ×  matrix that reduces the amount of

computation. If so, the set of predictions affecting the cost function can be expressed as
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The cost function can be rewritten as
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 are used and µ  is called an input weighting factor.

The optimal control input can be expressed as
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Because of the receding control strategy, only )(tu∆  is needed at instant t . Thus only the first m  rows of the

matrix ( ) QHRHQH ~~~ 1 T
ss

T
s

−
+  have to be computed.

In order to obtain the control input, it is necessary to calculate the matrix sH  and the vector sf . These
matrix and vector can be calculated recursively. From now on, the derivation will be described. By taking into
account a new Diophantine equation corresponding to the prediction for )|1(̂ tjt ++y , Eq. (5) can also be
rewritten as follows:

)()(
~

)( 1
1

)1(11
1

−
+

+−−−
+× += qqqq j

j
jnn FAEI . (16)

Subtracting Eq. (5) from Eq. (16) gives
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where )(
~ 1−qG  is an nn×  matrix polynomial of order smaller or equal to 1−j  and jG  is an nn×  real

matrix. By substituting Eq. (18) into Eq. (17)
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The following expressions can easily be obtained from Eq. (19):
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Also, it can easily be seen that the initial conditions for the recursion equation are given by
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The vector f  (free response) can be computed by the following recursive relationship:
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3. Axial Xenon Oscillation Model

An axial xenon oscillation model given in the literatures [17,20] for a pressurized water reactor is  used to
demonstrate the proposed control algorithm. The two-point model was derived from the nonlinear xenon and
iodine balance equations and a one-group, one-dimensional, neutron diffusion equation having nonlinear power
reactivity feedback. The total power of the reactor core is held constant even though the power density varies as
a function of both time and position. The axial xenon oscillation model will be described below.

The one-dimensional diffusion equation with a prompt-power feedback is

0),(),(),(),()(),( 2
002

2
=∑−−








∑−

∑
+

∂
∂ tztztzxXtzz

kz
tzD aFXa

f ϕφαϕσϕ
νϕ

, (26)

and the iodine and xenon balance equations are
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where the parameters have their usual meanings, and 00 , Xφ  and 0I  are the time independent steady-state

values of the flux, xenon concentration and iodine concentration, respectively and ),( tzϕ , ),( tzx  and ),( tzy
are their time varying amplitudes, respectively. The axial coordinate z  is measured from the center of the
cylinder that is of height H . Two-term spatial, harmonic-series solutions are assumed for the axial flux, xenon,
and iodine distributions as follows:
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The spatial averages of the flux and the xenon and iodine concentrations for the lower half of the core are
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The equations for the upper half of the core are
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An equation of the amplitude )(tP  is derived and solved by maintaining a reactor as nearly critical as
possible using a variational estimate of the eigenvalues of the one-dimensional diffusion equation [17]:
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The dynamic equations of the other amplitude functions )(tX  and )(tY  are obtained by integrating Eqs. (27)

and (28) over the two regions of the core and substituting Eqs. (29) through (37) [17,20]:
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The detailed axial xenon oscillation model is given in the literature [17].

The one-group diffusion parameters of the foregoing dynamic equations are listed in Table 1. The a∑  is
expressed as the combination of absorption cross sections of the fuel, moderator, structure, and control poison.

Table 1. One-group diffusion parameters of the axial xenon oscillation model [17].
Parameter Value

0φ ][101.2 1213 −− ⋅× scm

Xσ ][106.2 218 cm−×
Fα ][106.3 216 scm ⋅× −

Iγ 061.0

Xγ 0.003

Iγ ][1087.2 15 −−× s
Xγ ][1009.2 15 −−× s

D ][375.0 cm
H ][8.365 cm

f∑ ][65.0 1−cm
f∑ν ][56.1 1−cm

a∑ ][523.1 1−cm



4. Application to the Axial Xenon Oscillation Model

The two-point xenon oscillation model has two inputs and two outputs that consist of inputs and outputs for
the lower and upper halves. Therefore, the control input is obtained from the first two rows of the following
equation:
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= the variation in absorber cross sections 1a∑  and 2a∑  between two neighboring time steps,

subscripts '1' or '2' refer to the lower and upper halves of a core, respectively.

Since the nonlinear xenon oscillation model described above is inadequate to design the controller and a
linear mathematical model of the xenon oscillation model is used, a linearized model was obtained through the
linear identification of the nonlinear xenon oscillation model using a conventional parameter estimation
algorithm. The linearized model of Eq. (1) is as follows:
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The tuning parameters used in numerical simulations are the prediction horizons 1N  and 2N , the control

horizon M , the output and input weighting matrices Q
~

 and R~ . Increasing the maximum prediction horizon

2N  usually speeds up the step response of the closed loop system but induces an increase in overshoot, and the
longer the prediction horizon, the less precise the prediction of the process output. Also, a longer prediction
horizon increases the computational burden. Increasing the control horizon usually makes the system more active
and hence allows a fast response to the system inputs. However, depending upon the value of the control horizon,
the closed loop system response may become oscillatory with a large control horizon. The input weighting factor
µ  of the control sequence plays an important role in determining the behavior of the closed loop system. When
the factor decreases, the system can be unstable. As the weighting factor increases, the response become better
damped but is slowed down. In all simulations the following parameters are used:

3=N , 2=M , IQ =
~

, and IR ×= 10000~
.



First, a numerical simulation was performed in order to observe the tracking performance of the proposed
controller for the axial target flux shape that changes by step or ramp . Figure 3 shows its performance. The
normalized target flux is changed by a step increase at ht 10=  and by a ramp  decrease from ht 60= . The
proposed controller tracks the target neutron flux without delay.
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Fig. 3. Performance of the proposed controller due to ramp and step changes of axial target shape.

Figure 4 shows how well this controller damps the oscillations when some oscillations are induced externally.
A perturbation is initiated at ht 10=  suddenly as shown in Fig. 4b and lasts for h5.2 . Its amount is a 0.2%
change of absorber in the lower region at that time. Some free oscillations of the flux, xenon and iodine take
place without any controller action for h5.67  after the initiation of the perturbation as shown in Fig. 4a. The
proposed controller is activated at ht 80= and stops the oscillations promptly. After that time, the normalized
neutron flux follows the axial target shape without any delay.
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Fig. 4. Performance of the proposed controller for the removal of free oscillations.

Figure 5 simulates the circumstances similar to Fig. 3. The difference is that a power reactivity coefficient

Fα  varies according to a ramp decrease and a step increase as a function of time (refer to Fig. 5c). The
parameter value is less than that of the first simulation (refer to Table 1 and Fig. 3). The reactor usually becomes
more unstable as the parameter decreases. But its performance is similar to the results of the first numerical
simulation.
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5. Conclusions

A receding horizon control algorithm for the axial neutron flux shape control is presented. The concept of
receding horizon control is to solve an optimization problem for a finite future at current time and to implement
the first optimal control input as the current control input. The procedure is then repeated at each subsequent
instant. The proposed algorithm is demonstrated by using a two-point xenon oscillation model based on the
nonlinear xenon and iodine balance equations and a one-group, one-dimensional, neutron diffusion equation
having nonlinear power reactivity feedback. The proposed control algorithm tracks the step and ramp changes of
axial target neutron flux shape without any residual flux oscillations between the upper and lower halves of the
reactor core. Also, this controller shows good performance even under time-varying conditions and promptly
damps some oscillations induced by external means.

Other computer simulations had been performed under similar circumstances using the same xenon
oscillation model and are given in the literatures [19-20]. In the previous works, the reconstructive inverse
dynamics control and adaptive control methods had been used. The receding horizon controller shows better
response or better characteristics than the controllers of the previous works [19-20].
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