2000

Alloy600, 690 800

Eletrochemical Properties and Stress Corrosion Cracking of Alloys 600, 690, and 800 in Solutions Containing Boric Acid and Chloride

Abstract

Electrochemical characteristics and stress corrosion cracking(SCC) of Alloy 600, Alloy 690 and Alloy 800 have been studied in boric acid solution with chloride. Electrochemical characteristics were measured in mixed solution of 3% H₃BO₃ and 0.2g/ Cl⁻at 320° C. SCC resistance was predicted with Parameter(P_{SCC}) including current density ratio obtained at two different scan rates. P_{SCC} increased with a following sequence: Alloy 600MA, 600TT, 690TT and Alloy 800. SCC test was carried out with C-ring specimens and reverse U-bend(RUB) specimens at 320° C and 350° C. Test

solutions were mixture of 3% H_3BO_3 and 0.2g/ Cl⁻ at 320°C and mixture of 27% H_3BO_3 and 2g/ Cl⁻at 350°C. C-ring specimens test in the solution of 3% H_3BO_3 and 0.2g/ Cl⁻at 320°C for 2400hrs did not show SCC. RUB specimen of Alloy600MA and 600TT showed SCC after 1920 hours exposure to the solution of 27% H_3BO_3 and 0.2g/ Cl⁻at 350°C

1.

Ni-base		Inconel					, 가			가
		(P\	NR)							
						가			(pitti	ing),
	(stres	s corrosic	on crack	ing),	(was	stage or th	iinning),	(de 가	enting)	,
[1].									
2									(Na⁺,	Cl-
,K ⁺ , SO ₄ ²⁻)										
		Na	a⁺, K⁺			가			가	
Cl ⁻ , SO ₄ ²	-		가			가				
	가					2				
							[2	~4].		
	А	lloy600, 6	90			Р	hillppe I	Berge[5	8]	
	R.	N.Parkins	[6]							
71		800	71				D \//	Staabla	[7]	
71		300	~1				. n.vv.	Scaerile	[/] 7[
~1								300	~1	
						Allov600.	690.80)0		
R.N.Pa	arkins	R.W.Stae	ehle			· · · · · · · · · · · · · · · · · · ·	,	-		
scan	rates		SCC	가		C-1	ring		ç	SCC
							0			
2.										
가.										
						Α	Alloy600	, 690	80	00
				22.23	3mm,	1.27n	nm -	(tube)		
	가	. 39	% H₃BO₃	, 0.2g/	Cl	27% H _s B	80 ₃ , 2g/	CI가		

. Table1

•

Material	Chemical composition (wt%)							
	С	Si	Mn	Р	S	Cr	Ni	Со
		Мо	Ti	Cu	Al	Fe	В	Ν
Alloy	0.04	0.03	0.27	-	0.001	15.21	75.34	-
600MA		-	-	0.12	0.22	8.03	-	-
Alloy	0.026	0.22	0.30	-	<0.001	15.12	73.77	0.015
60011		-	0.36	0.006	0.26	9.21	-	-
Alloy	0.02	0.36	0.31	0.01	0.001	30.0	59.6	I
69011		0.013	0.33	0.01	0.023	9.26	0.001	0.033
Alloy	0.014	0.53	0.53	0.008	0.003	22.35	33.91	0.03
800		-	0.45	0.032	0.17	-	-	0.017

Table.1. Chemical composition of the specimens.

Table.2. Mechanical properties of the specimens.

Material	Test	Heat	UTS	YS	EL	Thermal	Grain Size
		No.	(Mp	(Mpa)	(%)	Treatment	(ASTM
			a)				No.)
Alloy	C-ring,	NX8688	669	276	50	MA at	6.47
600MA	U-bend					980°C	
						2.25min	
Alloy	C-ring	5230	702	316	46	MA950	
600TT	U-bend					2min	9
						750~750°C	
						12hrs	
Alloy	C-ring	753175	722	334	49	Annealed	
690TT	U-bend					at 1080°C	
						1min->TT	6.07
						at 725°C	
						10hrs	
Alloy	C-ring	467730		406	39	Annealed	9.0~9.5
800	U-bend					at 990°C	

(phosphoric acid 80ml,

water 10ml), 2.5V, 30sec natal

.

.

(methanol 95ml, nitric 5ml) 2.5V, 30sec

.

5%

10mm X 12mm Alloy600, 690 800 #600~ #1200 가 0.05µm polising (spot welding) (heat shrinking Teflon tube) .

320°C Ni-Plate Ag/ AgCl . M352 corrosion software 가 486PC EG&G 273A potentiostat가 . Scan unstable film stable film rates scan scan rate 99.99% . 320°C 가 1 30 0.2V 600 900 20mV/sec 1200 0.2mV/sec

scan rate(scanning rate ratio)scan ratesscanscanscanscanscanning rate ratio[RsR]scansSCC 가가SCC parameter [Pscc]가가SCC parameter [Pscc]가

 $R_{SR}[E] = I[E]_{20mV/s} / I[E]_{0.2mV/s} - - - - - (1)$

SCC α R_{SR}[E]I[E]_{20mV/s} -----(2) (2) R_{SR} SCC 7 scan crack tip 7 .

.

SCC[E] α R_{SR}²(E) I(E)_{0.2mV/s} -----(3)
(3) a stress corrosion cracking (SCC) Parameter(P_{SCC})

. C-ring

•

		Alloy	600, 690	, 800	. [Table	e 1]	
12mm가				60)°7ŀ	Fig.1	
	4					150%	
ASTM (G[48]		가			Alloy600	. C -
ring					(apex)		가
		7	ŀ			가 .	
Odf =OD	- Δ						
$\Delta = f\pi D2$	/ 4EtZ						
: (DD =	가	C - ring				
(DDf =	가	C-ring				
	Δ =	가					
f	=						
[) =	(OD- t)					
	t =						
	E =						
	Z =						
. U-bend	I						
			3/4″ (1	9.05mm)	1/24″	Allov600, 690)
800			[Table 1.	21	. t	ube	
wire	cutting	1	•	mendrel	bende	r	
	U					Reverse U-ber	nd
4	Ļ			Fig.2		304	
		Alloy600		-			
2							
3. 80071		6000			71 Dorl	vinc [6] [7]	
50021	. Par	kins F	ia.3	가	SCC가	slip event	
			5	·	·		
film-free d	lissolution						
SC	an				가		가
	SCC			R_{SR}	P_{SCC}		
				R	SR		
		SCC	フト	•		Alloy 600MA,	600TT,
690TT	800			scan		(Fig.4. ~Fig.7	7). Alloy
600MA가		scan		가가	600TT	, 690TT, 800	

가 690TT가 가 600MA가 scan . 가 가 Cr 가 . Staehle [7] . SCC P_{scc}(SCC 가 가) . Fig.8~11 SCC . SCC Fig.8~Fig11 Alloy600MA, 600TT, 690TT 800 가 SCC P_{scc} $\mathsf{P}_{\mathrm{scc}}$ 가 가 가 . R_{SR} .

steady-state transite currents 가 Fig.3 R_{SR} steady-state current R_{SR} 가

Fig.8~Fig.11 SCC 가 Parkins I /I P_{scc}가 Staehle I/I Alloy 600MA, . 600TT, 690, 800 0.2mV/s scan Cr 가 가 가 가가 SCC . 가 , Cr SCC . Table3 SCC 가

. 600MA, 600TT, 690TT 800 SCC 가 . 가 2400 SCC . Table4

가 SCC . Table4 . \mathbf{P}^{M}_{SCC} $\mathsf{E}^{\mathsf{M}}_{\mathrm{SCC}}$ P^{M}_{SCC} C-ring P_{scc} $\Delta E^{1/2}$ scc SCC 가 Brint [8] Alloy600 SCC SCC 가

Cr . M.W.Maan [9] 가

Table.3 Properties of SCC Parameters in 3% H_3BO_3 and 0.2g/ Cl ⁻ at 320°C								
Material	600MA	600TT	690TT	800				
Falainenet								
$P^{M}_{SCC}(A/cm^{2})$	1000	300	200	30				
$E^{M}_{SCC}(V)$	- 160	-200	- 250	-200				
$\Delta E^{1/2} _{SCC}(V)$	-230	-280	- 300	- 250				

.

Table.4. Result of the C-ring test 3% H₃BO₃ and 0.2g/ Cl⁻at 320° C

	H ₃ BO ₃	Cl-	Material		Result()
			Heat .N.O	Specimen		
			600MA		X(2400)	
320°C	3%	0.2g/l	600TT	C-ring	X(2400)	
			690TT		X(2400)	
			800		X(2400)	

Pillppe Berge [5] 102°C H₃BO₃ 27% Cl 가 330 , 250°C, 가 50g/l Cl⁻ 2000 . 가 CI⁻가 가 . H₃BO₃ 가 가 290°C, . 가 40w% H₃BO₃, 50ppm Cl⁻ 350°C, H₃BO₃ 27%, Cl⁻ (2g/l), 1920 600MA, 600TT 690TT, 800 SCC가 . 600TT가 600MA 가 600MA U-bend . SCC . Fig.13 Fig.12 SEM 600MA . Fig.14 Alloy600TT . Fig16 Alloy600TT SEM Table5 U-bend .

Table.5. Results of the reverse U-bend test.

	H_3BO_3	Cl ⁻	O ₂	Material		Result()
				Heat No.	Specimen	
				600MA		IG(1920)
350°C	27%	2g/l	aerated	600TT	Reverse	IG(1920)
				69011 800	U-bend	NO(1920)
				800		NO(1920)

IG:intergranularcracking NO: no cracking

 pH, O_2, H_3BO_3 Cl^-

4.

1. Alloy600, 690 800

.

- . 320°C 3% H₃BO₃ 0.2g/ Cl⁻ , (P_{SCC}) SCC . P_{SCC} Alloy 600MA, 600TT, 690TT 800 . 2. C-ring 7ŀ 3% H₃BO₃ 0.2g/ Cl⁻ 320°C 2400 .
- 3. Reverse U-bend 27% H₃BO₃, 2g/ Cl⁻, O₂ 350°C 1920 600TT 600MA . 600TT가 600MA 가

Fig.2 Dimension of the Reverse U-bend specimen

Fig.4 The polarization curves of Alloy 600MA in the water of 3% H_3BO_3 and 0.2g/ $\,$ Cl^ at 320°C .

Fig.5 The polarization curves of Alloy 600TT in the water of 3% H_3BO_3 and 0.2g/ $\mbox{ Cl}^-$ at 320°C .

Fig.6 The polarization curves of Alloy 690TT in the $water \mbox{ of } 3\% \ H_3BO_3 \ \mbox{and } 0.2g/ \ \ Cl^- \ \mbox{at } 320^\circ C \ .$

Fig. 7 The polarization curves of Alloy 800 in the water of 3% H_3BO_3 and 0.2g/ \mbox{Cl}^- at 320°C .

Fig.3 Schematics of three case of fast, intermediate, and slow repassivation corresponding to (1), (2) and (3) [fast is dotted line end slow is solid line] from Steahle..

Fig.8 $P_{scc}~Vs~~I~/I~Vs$ polarization curve of Alloy 600MA in the water of 3% H_3BO_3 and 0.2g/ Cl^- at 320°C .

Fig.9 P_{SCC} Vs ~~I/I Vs polarization curve of Alloy 690TT in the water of 3% H_3BO_3 and 0.2g/ $~CI^-$ at 320°C .

Fig.10 P_{SCC} Vs ~~I/I Vs polarization curve of Alloy 600TT in the water of 3% H_3BO_3 and 0.2g/ $~CI^-$ at 320°C

Fig.11 P_{scc} Vs ~~I/I Vs polarization curve of Alloy 800 in the water of 3% H_3BO_3 and $0.2\,g/~~Cl^-$ at 320°C .

Fig.12 Alloy600MA Optical micrographs showing the cross section in 27% $\rm H_3BO_3\,$ and 2g/ $\,$ Cl^- at 350°C for 1920hrs.

Fig.15 Reverse U-bend specimen

Fig.13 SEM micrographs of 600MA

Fig.14 SEM micrographs of 600MA.

Fig.16 Alloy600TT Optical micrographs showing the cross section in 27% H_3BO_3 and 2g/ Cl⁻ at 350°C for 1920hrs.

Fig.18 Reverse U-bend specimen

Fig.17 SEM micrographs of 600TT

REFERENCES

- 1. Nuclear Engineering Inerational, January, 18(1995)
- A.K.Agrawal, J.P.N.Paine, Procceedings; 4th Int I Symposium on Environmental Degradation of Materials in Nuclear in Nuclear Power Systems - Waer Reactors -Aug.6-10, 1989. JeKyll Island, Georgia, p7-1, NACE, Houston, USA ,1990
- B.P.Miglin, J.M.Sarver, Procceedings; 4th Int'l Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors-, p.6-10, 1989.Jekyll Island, Georgia, p7-18,NACE, Houton,USA, 1990
- B.P.Miglin, J.M.Sarver, Procceedings; 5th Int I Symposium on Environmental Degradation of Materials in Nuclear in Nuclear Power Systems - Waer Reactors -Aug.6-10, 1989. JeKyll Island, Georgia, p7-1, NACE, Houston, USA ,1990
- 5. Philippe Berge, Chloride stress corrosion cracking of Alloy 600 in boric acid solutions
- R.N.PARKINS and N.J.H. HOLROYD ,"Stress corrosion cracking of 70/30 brass in acetate, formate, tartrate, and hydroxide solutions" Vol.38, NO.5, 1982
- Z.fang and R.W.Staehle. "Effects of the Valence of sulfur on passivation of Alloy600, 690, and 800 at 25°C and 95°C" CORROSION-Vol.55, NO.4
- C.L.Briant, C.S.O'Too;e, and E.L.Hall, "the Effect of Microstruture on the Corrosion and Stress Corrosion Cracking of Alloy 600 in Acidic and Neutral Environments" Corrosion, Vol.42, Na.1 15(1986)
- 9. Inco. Internal Report PR 358.3