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Abstract

 The design criteria of the software module were based on complexity of the module and the

cohesion of the module. The easiness of detection of a fault in the software module can be an

additional candidate for the module design criteria. The module test coverage criteria and test

case generation is reviewed from the aspects of module testability, easiness of the fault

detection. One of the methods is making the numerical results as output in addition to the

logical outputs. With modules designed with high testability, the test case generation and test

coverage can be made more effective.

1. Introduction

 Software life cycle is defined from functional requirements to operation and maintenance

phase of the software. In this software life cycle, testing is part of design process. The testing is

performed in unit entity, which can be a module and in assembled entity that can be a program

with modules combined for a specific functions. Depending on the importance of software, the

unit testing phases can be combined into program level testing, or independent personnel not

involved in the design of software might perform the testing. Regardless of classification of

software, testing is usually considered after the implementations have been finished. But there

have been papers recommending to perform design considering easiness of testing, testability,

arguing testing can be improved by designing the software with testing considered in advance.

Software testing can be classified as white box testing and black box testing. The white box

testing is performed at the module level testing. The black box testing is performed at the

program level testing which verifies the functional requirements or requirements at the system



level of the software. The white box testing is also called as the program based testing. The

white box testing can be classified structure based testing and fault based testing. Test cases of

program based testing are generated based on the structure of the program, such as internal data

flow or control flow of the software. The structure based testing can be classified into various

methods depending on its coverage criteria; define-use test, path testing, branch testing, etc. The

fault based testing tries to find errors in the program by making mutation version of the program

by inserting the faults at the specified locations. The original and mutated program results are

compared each other to evaluate whether the test cases can detect inserted types of faults. The

fault based testing can be used to evaluate effectiveness of the other test scheme. The black box

testing can be classified as random testing, functional testing, specification based testing, etc.

There have been papers comparing effectiveness of each testing scheme over the resources

spent to find errors, number of errors found.

 The software errors are related to the program complexity, and various software metrics have

been proposed for appropriate program complexity. Simple measures are based on measures that

can be observed directly form programs, such as number of program lines, number of operators,

and number of operands, etc. There are very complicated measures like Halstead’s Software

Science. Among these software measures, the McCabe cyclomatic complexity metric is used

widely. This is based on the assumption that the software complexity is related to the number of

control paths generated by the code. From experimental analysis, the programs with cyclomatic

complexity greater than 10 is error-prone, and recommended not to exceed that value [1].

Another measure is the Halstead’s Software Science which is based on the assumption that a

program should be viewed as an expression of language. Halstead’s Software Science calculates

the measure from the number of distinct operators, number of distinct operands, number of all

operators in the code, and the number of all operands in the code [1]. There has been a paper on

software complexity analysis with graph theory. The program graph is constructed from the

program graph and the graph is analyzed by building adjacency matrix, fundamental circuit

matrix that represents the identification of program paths. Program complexity measures are

performed from the operation of the matrix operations [2]. One method of fault based testing is

the RELAY fault propagation model. The RELAY model of faults and failures is based on

incorrect intermediate state from a faulty statement to output. It defines necessary and sufficient

conditions for detecting certain classes of faults. REALY models a fault composed of three

distinct steps of introduction of an origination of a fault, computational transfer of a fault,

propagation of an error to the output. The original state potential failure occurs when the node

containing the fault evaluates incorrectly. Even the error state is introduced, certain conditions

should be met for an error state to result in failure. For the propagation of an error, both the data

flow and control flow is considered. The comprehensive transfer information can provide guide



in testing to investigate whether certain constructs are more prone to coincidental correctness

[3].

2. Software Testability

 There have been efforts for the testability of the software. Software testability is defined as the

probability that a piece of software will fail on its next execution during testing if the software

includes a fault [4]. Software testability focuses on the probability that a fault in a program will

be revealed by testing. Testability analysis identifies several places in the code where testing is

highly unlikely to reveal faults. And further formal analysis and non-random tests are devised to

exercise these sections more extensively. If we can change the functional description to include

more internal information, we should be able to increase testability upper bound. Software

testability can be predicted by sensitivity analysis that seeds the fault and observing the

propagation into failures. As design heuristics for testability, J. Voas suggest three methods,

specification decomposition to reduce error cancellation, minimize variable reuse, increasing

out-parameters. Out-parameters mean specifying special output variables that are specified and

implemented specifically and exclusively for testing [4]. For this idea of making software easy

to reveal faults, A. Bertolino argues different opinion. For complex software, distributions of

faults are not known and faults are due to subtle faults, mismatches between module interfaces,

and testability should consider imperfectness of test oracle. We should make program more

robust, and increase coverage by improving oracle or observability of internal state, and choose

test input distribution to increase error infection probability.  Raising testability by raising the

failure probability is dangerous, and should not increase failure probability while increasing

probability of detecting faults. We need more refined testing tools and need improving the

internal error detection capability [5]. Other method of analyzing testability introduces the

domain testability with observability and controllability. A program is domain testable if a

program is observable and controllable . The observability of the program is defined as the ease

of determining if specified inputs affect the outputs, the controllability is defined as the ease of

producing a specified output from a specified input. Testing of domain testable specification

takes less time than non-domain testable specification. The output of program is function of its

input and state, the observability implies that the output value of a program is a function of the

input values only. The data characteristics are either explicit test inputs and outputs (specific

identifier in program) and implicit test inputs and outputs (component states). Programs can be

made more observable by introducing more input based on implicit states, and program

controllability can be increased by restricting the range of outputs. To increase the



controllability, the output range should be defined more restrictively [6]. There are efforts

measuring the testability early in the design stage based on the specification. The testability of

the software can be roughly measured from the software input domain and software output

range. If the ratio of the [domain/range] is big, then the testability is low. If the ratio is small, the

testability is high [4].

3. Module Testing of the Core Protection Calculator System

 The Core Protection Calculator System (CPCS) performs the safety function of generating

Departure from Nucleate Boiling Ratio (DNBR) trip and Local Power Density (LPD) trip

signals. The software consists of several programs performing its own specific  calculations. The

UPDATE software is one of the programs and updates the detailed calculation of the DNBR

based on the newly read input signals. The UPDATE is composed of several modules that

perform specified calculations. Each module is designed with the principles of single entry and

single exit, small enough to analyze the branches are exercised by a particular set of input data.

The module verification is performed branch coverage testing based on the flow chart. Variable

Over-Power Trip (VOPT) module is one of UPDATE modules that generates protection signal

when the calculated reactor power is greater than the pre-set value or the increase rate of the

reactor power is excessive. The protection signal is generated when the actual power is greater

than the calculated trip setpoint. The trip setpoint is a variable, and is calculated to follow the

actual power with preset margin within maximum ceiling. But the increase rate of the trip

setpoint is limited by pre-specified value. Thus the trip setpoint is changing as the measured

actual power is changing, but as the actual power increases at a greater rate than the setpoint can

change, the actual power becomes greater than the trip setpoint resulting in trip signal

generation. The VOPT is based on auctioneered power from excore detector signals,

temperature shadowing corrected excore detector signals, neutron flux power, and thermal

power. A variable, FOLLOW, is calculated which follows changes in the auctioneered power

within rate limits. FOLLOW cannot be changed from its previous value by more than an amount

depending on the data base limits and the computing interval. The VOPT setpoint is computed

by adding a fixed power bias, ∆SPV, to the variable FOLLOW. The VOPT setpoint is limited by

a minimum allowable value, SPVMIN, and a maximum allowable value, SPVMAX. The trip is set by

adding 40 to the auxiliary trip flag JTRP.

The raw neutron flux power and the temperature corrected neutron flux power are calculated by

the following algorithm [7] ,
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The maximum power is then selected.

Where,

D1,D2,D3  = scaled, excore neutron flux detector values
KCAL  = addressable neutron flux power calibration constant
ΦCAL    = calibrated neutron flux power(% of rated power)
B∆T      = calibrated static component of thermal power, % of rated power

ΦRAWD  = raw neutron flux power (% rated power)

ΦTCORD  = temperature corrected neutron flux power (% rated power)
TF  = coolant temperature shadowing factor
ΦMAX  = maximum power (% rated power)

The FOLLOW is calculated by,

The VOPT setpoint is then calculated:

Above, the subscript p denotes value from previous execution

SUPMAX = maximum increase for FOLLOW within an execution of UPDATE(% rated power)

SDNMAX = maximum decrease for FOLLOW within an execution of UPDATE(% rated power)

FOLLOW = rate limited maximum of auctioneered power(% rated power)

FUP, FDN = intermediate variables used to calculated FOLLOW

∆SPV  =amount in % power, by which VOPT setpoint is above FOLLOW

SPVMAX  = maximum allowable value of VOPT setpoint(% rated power)

SPVOP1  = intermediate variable used to calculate VOPT setpoint

SPVOPT  = VOPT setpoint (% rated power)

JTRP     = Auxiliary trip flag

The flow chart for the VOPT module is shown in Figure 1. It shows branches with sequential

parts condensed into single description of box. With this flow chart, the test cases can be built to

cover all the branches. The Fortran program for the VOPT function except variable definition is

shown in Figure 2. The SUPMAX, SDNMAX, and SPVMIN are constants having values of 0.02,
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0.5, and 30.0 respectively. All other variables are real valued variable except JTRP which is an

integer variable. For this module, 5 test cases are selected to perform the testing which is shown

in the Table 1, with additional test case 6. The condition table is drawn to calculate and check

proper test sets are generated to cover the entire branch at least once. The expected outputs are

shown in the table 2. Even the main output is the auxiliary trip flag, JTRP, there are two more

outputs that are used in some other modules.

Figure 1 Flow Chart of VOPT

One of the method to increase the testability of software is to make outputs such that the

Domain Range Ratio of the module to be close to 1 [4]. By making the numerical output

available in addition to the boolean value, the testability can be increased. In case of VOPT

function, the output is the JTRP flag that is set as the trip condition occurs. By making outputs

FOLLOW and PMAX available in addition to the JTRP, the testability can be increased. With

the boolean output JTRP alone, there is chance that faulty error states can not be detected with

test cases. But with output FOLLOW and PMAX, the numerical error states can be detected

more easily with test cases.



      PRAWD       =  KCAL * (D1+D2+D3) * 100.0
      PTCORD      =  PRAWD * TCORF
      PMAX        =  DMAX1 (PRAWD,PTCORD,PHICAL,BDT)
      FUP          =  DMIN1 (PMAX,(FOLLOW+SUPMAX))
      FDN          =  FOLLOW-SDNMAX
      FOLLOW      =  DMAX1 (FUP,FDN)
      SPVOP1       =  DMIN1 ((FOLLOW + DELSPV),SPVMAX)
      SPVOPT       =  DMAX1 (SPVOP1, SPVMIN)
      IF (PMAX .GE. SPVOPT) THEN
      JTRP          = 40 + JTRP
      ENDIF

Figure 2. VOPT Algorithm Listing

The test was performed with fault seeding by replacing the * operator in line 2 of the program

with + operator for test case 6. With this fault seeded, the JTRP are correct as expected, the

PMAX value is different. Thus adding additional outputs that can compensate the domain range

ratio for the outputs can increase the testability of the program. This results shows similar

results as the J. Voas’s recommendations to increase the testability by reducing the domain

range ratio by inserting additional outputs for testability. The state variable FOLLOW has been

also classified as test inputs and outputs, such that the observability of the module is increased

resulting in high testability.

Table 1. Test Case for VOPT function
  Test case
Variables

1 2 3 4 5 6

PHICAL 95.0 80.0 1001.0 28.0 94.24 95.0
FOLLOW 90.0 90.0 90.0 80.0 10.0 90.0
D1 0.31 0.67 0.30 0.30 0.3543 0.31
D2 0.40 0.12 0.50 0.50 0.3830 0.40
D3 0.30 0.1 0.20 0.20 0.297 0.30
KCAL 1.0 0.01 1.0 0.01 0.999 1.0
TCORF 1.0 1.0 1.1 0.1 0.9957 1.0
BDT 100.0 70.0 1002.0 29.0 93.55 100.0
DELSPV 15.0 15.0 15.0 0.5 15.0 15.0
SPVMAX 110.0 110.0 110.0 30.02 110.0 110.0
JTRP 0 20 0 10 10 0

Table 2. Test Output for VOPT function
 Test case

Outut
1 2 3 4 5 6

FOLLOW 90.02 89.5 90.02 79.5 10.02 90.02
PMAX 101.0 80.0 1002.0 29.0 103.33 102.0
JTRP 0 20 40 10 50 0
 Some of the modules have many branches. In this case, the generation of the test case is very



time consuming  Some of the branches can not be executed by the intermediate calculations

not resulting in taking the other branches. In this case, the reason for not taking that branch is

investigated and it is justified. The building of the condition table and branch coverage

verification takes a lot of time. The verification of the coverage of branches can be automated

by checking the machine instruction and its execution branch. The branch coverage criterion is

relatively easy criteria  to meet, but the define-use coverage and path coverage takes much more

efforts. There have been many papers about the appropriate module complexity, such as line

number, number of operators, etc. The modularization criteria are cohesion, coupling,

complexity, correctness, and correspondence. Cohesion is the glue that holds a module together.

The modules can be designed based on functional, sequential, communicational, procedural,

temporal, or logical cohesion. The functional cohesion results when every function within the

module contributes directly to performing one single function. Where possible, functional,

sequential, and communicational strength modules should be given preference over modules

with lower levels of cohesion [8]. Coupling is a measure of the strength of interconnection

between modules. Other factors are described in the reference 8. The branch instructions can

also cause the error cancellation effects, which causes the error being cancelled by the opposite

branch giving the same results. Thus for the resource saving and error reduction, the module

should be designed to be granular and the complexity of the module to be limited appropriately

based on the test coverage criteria  to be applied. One candidate for the modularization criteria

can be the testability of the module to reduce error hiding at the program and resources for the

testing .



4. Conclusion

The module testing with branch coverage criteria is presented with actual modules from safety

system software. The fault delectability of the testing can be increased by making the numerical

calculation results in addition to the logical outputs. This also makes the testability of the

module increased by making the result comparison easy, and reducing the error cancellation

effect that can contribute the error hiding probability. The module design criteria was based on

complexity and cohesion of the functionality. The module design can be based on the testability

of the module. Because the complexity of the module have great influence of the test case

selection, the module design considering the testing can reduce the testing efforts.
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