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Abstract

The experimental study of water CHF (critical heat flux) under zero flow conditions were carried
out in an annulus flow channel with uniformly and non-uniformly heated sections over a pressure
range of 0.52 to 14.96 MPa. A comparison of the present data with the existing flooding CHF
correlations shows that the predicted values by the existing flooding CHF correlations give
considerably lower values than the present data. When the correction terms with the density ratio and
the effect of the heat flux distribution proposed in the present work are used with the CHF correlation
based on the Wallis flooding correlation, it predicts the measured flooding CHF within an RMS error
of 9.0 %.

1. Introduction

Correct characterization of the critical heat flux (CHF) is of particular interest when predicting
nuclear reactor core behavior for accident situations, including a flow transient such as reactor
circulation pump failure and a loss of coolant accident (LOCA). The core coolant flow is reduced
during a large portion of several types of accident scenarios, and the reactor core encounters a stagnant
or reverse flow. The understanding of the fundamental nature of CHF in the vertical flow channel
under stagnant or zero flow condition will be important for reactor safety, as is the case with low flow
CHF. In the case of a vertical channel with a larger liquid volume or shorter heated section, it may be
inferred easily that the CHF mechanism becomes similar to the departure from nucleate boiling (DNB)
in pool boiling. The CHF mechanism for a narrow and long vertical channel under a zero flow
condition may be different from that of the pool boiling CHF.

Several investigators [1-4] have conducted experiments on CHF under very low flow conditions
from several hundred kg/m2s to a zero inlet flow with a completely closed bottom end. They have
observed that a countercurrent flow is formed in the vertical flow channel at zero and very low flow
rates, and subsequently the CHF occurs due to the countercurrent flow limitation (CCFL) or flooding.
The CHF in these boiling systems was considerably smaller than that of normal pool boiling [2-3].
The experiments of El-Genk et al. [3] indicated that the CHF values with zero flow were about 30 %
lower than those with net water upward flow when extrapolated to zero flow. For practical applications
in the non-nuclear industry, many studies on the CHF phenomenon of the countercurrent flow of a
heated vertical tube closed at the bottom end have been made with respect to the design and
performance of closed two-phase thermosyphons. Flooding in the countercurrent flow was regarded
and discussed by many investigators as one of the CHF mechanisms, and empirical flooding equations
were employed in the development of the correlations for prediction of the CHF. Hence, the CHF of
this sort is called the flooding CHF. The flooding CHF correlations were based on the Wallis empirical
equation [5] obtained from the countercurrent flow in water and air two-phase system or the
Kutateladze criterion for the onset of flooding, with the assumption of mass and energy balance.

The thermal hydraulics system codes most widely used for analyzing accidents in nuclear power
plants are RELAP5/MOD3 and TRAC-PF1. In these codes, the Biasi correlation [6] and the AECL-
UO CHF Look-up table [7], which are based on the data base of normal upward flow CHFs in tubes,
are employed for the prediction of CHF. To provide the CHF value for the zero flow conditions, the
Biasi correlation is evaluated at a mass flux of 200 kg/m2s and the CHF Look-up table uses the Zuber



pool boiling CHF correlation [8] with a void fraction correction suggested by Griffith et al. [9]. It is
obvious that the codes adopt inappropriate methods to predict the CHF under zero flow conditions.
The experimental studies of the CHF in closed two-phase thermosyphons have been made using a
uniformly heated vertical tube without a liquid reservoir at the top of the heated section. The
conditions of the nuclear reactor may require the vertical test channel with the non-uniformly heated
section and the liquid reservoir.

In the above references, the CHF experiments were carried out under near atmospheric pressure
conditions. The authors have conducted the CHF experiments for zero inlet flow in uniformly and
non-uniformly heated vertical annuli with a liquid reservoir under high pressure conditions [10,11]. In
this paper, several existing correlations for the countercurrent flooding CHF are compared with the
CHF data obtained in the previous experiments to examine the applicability of the correlations.

2. Experiments

A description of the facility, the experimental procedure and results can be found in references [10-
12]. A brief description will be presented here in order to orient the reader.

Figure 1 shows the details of the test section used in the present experiments. The test section
consists of a vertical annulus flow channel and upper and lower plenums. The upper plenum is
connected to a steam/water separator. As shown in Fig. 2, in the heater rod with non-uniform axial
power, the power level is divided into 10 steps with a minimum and maximum power ratio of 0.448
and 1.400, respectively, to simulate a symmetric chopped cosine heat flux profile.
  The CHF experiments have been performed by the following procedure. First, the circulation pump,
preheater and pressurizer are operated for raising the temperature of the loop and establishing inlet
subcooling and pressure of the test section at the desired levels, and the isolation valve located at the
upper stream of test section is fully closed. Power is applied to the heater rod of the test section and
increased gradually in small steps up to the CHF occurrence. The period between the power steps is
chosen to be sufficiently long (about fifteen minuets) so that the loop could stabilize at the steady-state
conditions.

In the present experimental conditions , the water temperature (T/CW 2) at the bottom end of the
heated section remained in a subcooled condition during a run of the experiment, in spite of the fact
that power was applied to the heater rod and the water of the heated section was being heated. This is
due to the existence of relatively large heat loss and convective heat transfer toward the lower plenum
in the present test section arrangement. A total of 135 CHF data were obtained in the ranges of the
water subcooling enthalpies from 85 to 413 kJ/kg at the bottom end of the heated section and system
pressures from 0.52 to 14.96 MPa. The pressure at the top end of the heated section is specified as the
system pressure and is used for the analysis of the experimental data.

3. Data Reduction

In the flooding phenomenon for countercurrent flow, the vapor flow rate is the most important
parameter. As mentioned above, the water at the bottom part of the heated section is under a subcooled
condition at the occurrence of a CHF. In this situation, the amount of steam generated in the heated
section cannot be evaluated directly from the mass and energy balances. The information for the
locations of the onset of saturated boiling is required to evaluated the vapor flow rate at the top end of
the heated section.

We can consider a countercurrent annular flow as illustrated in Fig. 3. In order to search for the
locations of the onset of saturated boiling in the present boiling system, it is assumed that the pressure
losses due to friction and acceleration can be neglected for the pressure difference ∆P between the
bottom end of the heated section (Z=0) and location Z, and that the void fraction in the subcool boiling
region is negligibly small. The pressure difference ∆P is equal to the static head from the bottom end
of the heated section to location Z. Consequently, the average void fraction α from the bottom end
(Z=0) to location Z is given as
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where ρl and ρg are the liquid and vapor densities, and g is the gravitational acceleration. The
subscripts sub and sat denote the subcooling and saturation conditions, respectively.

For the present test section, the pressure difference ∆Pm-2 measured by the differential pressure
transmitter DP-2 (see Fig. 1) are plotted as a function of subcooling temperature ∆Tsub at the bottom
end of the heated section for a given system pressure in Fig. 4. In the present conditions, it was
observed that the relationship between ∆Pm-2 and ∆Tsub is linear for a fixed system pressure. The
pressure difference ∆Pm-2,sat for ∆Tsub= 0 (i.e., Zsat= 0) at the bottom end of the heated section can be
given from the extrapolation of the liner relationship between ∆Pm-2 and ∆Tsub. Substituting the values
of ∆Pm-2,sat, Z (in the present case, Z = 1.042 m) and Zsat= 0 into Eq. (1), the average void fraction αo for
the saturated condition at the bottom end of the heated section is calculated for each system pressure.
When it is assumed that α decreases linearly in proportion to the increase of distance Zsat from the
bottom end of the heated section to the saturation point, the void fraction α is expressed as follows:
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Location Zsat of the onset of saturated boiling is given from Eqs. (1), (2) and the measured pressure
difference ∆Pm-2. For calculating Eq. (1), the subcooled liquid density ρ l,sub in the bottom region of the
heated section uses that for an average of the temperature at the bottom end of the heated section and
the saturated temperature.

Subsequently, the boiling length LB at CHF conditions is defined using the heated length Lh as
follows:
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The average CHF qC,B over the boiling length is expressed by
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where q(z) are the axial heat flux profile of the heater rod. In the present work, the experimental data
are analyzed with the boiling length LB and the average CHF qC,B.

4. Comparison of the Experimental Data with Existing correlations for flooding CHF

4.1. Existing correlations

The empirical flooding correlations have been useful to estimate the CHF in a heated vertical
channel closed at the bottom end. One of the most frequently used correlations for flooding was given
by Wallis [5], in the following expression:

    wlg Cmjj =+ ∗∗ 2/12/1 ,                                                            (5)

where ∗
gj  and ∗

lj  are the dimensionless superficial velocities of vapor and liquid, respectively, and
Cw is a constant, mainly depending upon the tube end conditions. Cw has values from 0.725 to 1.0,
from the flooding experimental results in the countercurrent flow. The constant m is set to unity in the
conditions of the present work. The dimensionless superficial velocities ∗

gj  and ∗
lj  are defined by

    2/12/1 )( −∗ ∆= ρρ gDjj ggg                                                          (6)

    2/12/1 )( −∗ ∆= ρρ gDjj lll ,                                                         (7)



where jg and jl are the superficial velocities of gas and liquid, respectively, D is the inner diameter of
the tube, and ∆ρ is the density difference (ρl - ρg) between the liquid and vapor phases. For the boiling
system shown in Fig. 3, when the heated area AB over the boiling length is employed, the following
mass and energy balance equation holds under steady-state conditions:
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where Af is the flow area of the channel, and hlg is the latent heat of vaporization. Substituting Eq. (8)
into Eq. (5) and using a hydraulic equivalent diameter Dhy in Eqs. (6) and (7) for the annulus channel,
the CHF due to flooding is expressed in a dimensionless form as in the following equation:
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In the above equation, the heated equivalent diameter to the boiling length ratio Dhe /(4LB) was used
instead of the term Af /AB. The CHF qC,B and the boiling length LB are calculated from Eqs. (4) and (3),
respectively. Sakhuja [13] showed that Eq. (9) agreed with his experimental data for tubes.

Mishima and Nishihara [2] rewrote Eq. (9) as follows:
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where D* is the dimensionless diameter, defined by D*=Dhy /λ. The length scale λ of the Taylor
instability is given by λ = (σ /g∆ρ)1/2, where σ is the surface tension. Therefore, D* used by Mishima
and Nishihara is equal to the Bond number, Bo = Dhy(g∆ρ  /σ)1/2. They reported that the flooding CHF
was well reproduced by Eq. (10) with Cw

2 = 0.96 for an annulus.
Nejat [14] proposed a flooding CHF correlation based on Eq. (9). The original form of the Nejat

correlation for the tube is as follows:
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where qC,ax is the CHF in an axial direction, defined by
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Nejat added the correction term (LB /D)-0.1  in the correlation in order to reduce the scatter of the
experimental data points on the tubes, and then showed that Eq. (11) with Cw

2 = 0.36 satisfactorily
correlates the experimental data. Using the CHF qC,B in the heated surface and the heated equivalent
diameter Dhe in the correction term, Eq. (11) is rewritten as
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where Cw
2 is 0.36(LB /Dhe)0.1 .

Several investigators have employed Kutateladze’s criterion for the onset of flooding, given by the
following expression:

    klg CmKK =+ 2/12/1                                                            (13)



where Kg and Kl are defined by Kg = jgρg
1/2(gσ∆ρ)-1/4 and Kl = jlρ l

1/2(gσ∆ρ)-1/4, respectively, and Ck is a
constant. Pushkina and Sorokin gave m = 0, Ck

2 = 3.2 for the flooding condition [15]. Substituting jg

and jl into Eq. (13) and setting the value of m to unity, a correlation for the flooding CHF is given by
the following expression:
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Tien and Chung [16] gave the form of Ck including a correction term with a function of the Bond
number Bo as follows: Ck

2=3.2[tanh(Bo
1/4/2)]2.

The empirical correlation with a similar form to Eq. (14) was derived by Imura et al. [17]. The
correlation is expressed by
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Imura et al. reported that Eq. (15) with Ck
2 = 0.64 correlated the experimental data within ± 30 %

accuracy.
Mishima and Nishihara [2] reported that the flooding CHF is correlated using Eq. (10) with Cw =

1.66, 0.98 and 0.73 for tubes, annuli and rectangular channels, respectively. In Nejat’s Eq. (11), Cw

was modified with the term of LB /D, and Tien and Chung proposed Eq. (14) with a correction term
relating to the Bond number Bo for Ck. This implies that the values of Cw and Ck are not constant and
vary with the geometry and thermodynamic conditions. Equations (9) and (14) show that the flooding
CHF is a function of LB /Dhe, Bo and ρg /ρ l. Park et al. [18] examined the effects of the terms LB /Dhe, Bo

and ρg /ρl on Cw
2 using Eq. (9)  based on the Wallis flooding equation and proposed the empirical

correlation for Cw
2 as follows:
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They reported that the flooding CHF is predicted within a RMS (root mean square) error of 18.8 %
when Eq. (16) for Cw

2 is used with Eq. (9).

4.2. Comparison with existing correlations

The present data are compared with Eqs. (10), (12), (14) and (15), using the dimensionless
parameters as follows:
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The results of the comparison are shown in Figs. 5~8. Figures 5, 7 and 8 show that Eqs. (10), (14) and
(15) greatly depend on the axial heat flux distribution of the heated section. In Fig. 5 for the Mishima
and Nishihara equation, the experimental data points have a large scatter in both heat flux distributions.
The Kutateladze flooding CHF correlation (Eq. (14)) and Imura et al.’s correlation (Eq. (15))
reasonably correlate the experimental data for the uniform heat flux, but the experimental data for the
non-uniform heat flux are considerably scattered as shown in Figs. 7 and 8. On the other hand, Fig. 6
shows that the Nejat equation (12) better correlates the experimental data in the range of pressures
from 3.02 to 14.96 MPa. The discrepancy between the uniform and non-uniform heat fluxes tends to
become large as the pressure decreases, particularly in the low pressure region (from 0.52 to 1.79



MPa). When Cw
2 and Ck

2 suggested by each investigator are used, the dimensionless parameters ∗
Cq

calculated by Eqs. (10), (12), (14) and (15) give considerably lower values than the present data. In the
comparison with Eq. (14), the value of 3.2 is used as Ck

2, because the use of the Bond number term of
Tien and Chung produces a large difference between the present data and the calculated values. The
form of the Bond number term of Tien and Chung may not be appropriate.

Equations (10), (12) and the Park et al. correlation for Cw
2 were derived using Eq. (9) based on the

Wallis flooding equation. When Ck
2 in Eq. (14) is set to 3.2Cw

2 and Eq. (16) for Cw
2 is used, Equation

(14) essentially has the same form as Eq. (10) because Eq. (16) includes the Bond number term. The
original correlation of Imura et al. [17] was derived independently of the flooding correlation. The
density ratio (ρg /ρl)-0.13 and the constant value of 0.64 for Ck

2 in the right-hand side of Eq. (15) were
determined empirically from their experimental results that the effect of Bo on the CHF is not
recognized at a constant ρg /ρ l condition. Katto and Hirano [19] pointed out that the right-hand side of
Eq. (15) is nearly equivalent to the right-hand side of Eq. (9) except for the value of Cw

2. Therefore,
Park et al.’s Cw

2 can be applied for Eqs. (10), (12), (14) and (15). As shown in Figs. 5 and 6, the values
calculated by Eqs. (10) and (12) with Cw

2 of Park et al. draw tolerably toward the present data.

Equation (10) with Park et al.’s Cw
2 gives a large scattering of the calculated ∗

kCq , . Figures 7 and 8

show that the parameter ∗
kCq ,  calculated by Eqs. (14) and (15) with Park et al.’s Cw

2 appear in a region
between the data points for uniform and non-uniform heat fluxes. The use of Park et al.’s Cw

2 in the
flooding CHF equations yields better agreement than Cw

2 and Ck
2 suggested by each investigator.

However, the discrepancy due to the effect of the heat flux distribution cannot be improved. As can be

seen from Fig. 6, the present data are linearly correlated with Nejat’s Eq. (12) and the parameter ∗
NCq ,

calculated using Park et al.’s Cw
2 do not scatter, although the effect of the heat flux distribution is large

in the low pressure region.
The range of ρg /ρl used in the development of Imura et al.’s correlation covers the present

experimental conditions. This means that the influence of the functional form of the density ratio term
is large. The comparison of the ranges of the present conditions and the experimental data used by
Park et al. [18] is listed in Table 1. In the range of the experimental data used in the development of
Park et al.’s Cw

2, the density ratio ρg /ρl does not cover the present experimental conditions. Therefore,
the term (ρg /ρ l)0.064 in Eq. (16) should be reformed as corresponds to the present conditions. In Eq. (9),
the variation of Cw

2 (= 4q*
C,w LB /(Dheξ ) for ρg /ρl can be obtained for the present data, and then, from

the best fitting of the relation between Cw
2 and ρg /ρl , the functional form of ρg /ρl in Eq. (16) is

obtained. As a result, the Park et al. correlation is rewritten as follows:
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In order to take into account the effect of the heat flux distribution on the CHF, the length LC,B from
the location of the onset of saturated boiling to the location of the CHF occurrence is introduced.
Using Eq. (17) for Cw

2 and the ratio Dhe /LC,B instead of the term Dhe /LB in Eqs. (9) and (14), and then
plotting the terms 4q*

C,w[1+(ρg /ρl)1/4 ]2 /Cw
2 and 4q*

C,k[1+(ρg /ρ l)1/4 ]2 /Cw
2 as a function of Dhe /LC,B ,

respectively, the functional forms of Dhe /LC,B for the present data are determined as follows:
    4(Dhe /LC,B)1.396   for Eq. (9) based on the Wallis flooding equation, and
    4(Dhe /LC,B)1.160   for Eq. (14) based on the Kutateladze flooding criterion.
Equations (9) and (14) including the above terms give the results as shown in Figs. 9 and 10. These
figures indicate that a pertinent use of the term Dhe /LC,B can reduce the effect of the heat flux
distribution on the CHF. In particular, Equation (9) with (Dhe /LC,B)1.396 is scarcely influenced by the
heat flux distribution. Consequently, Equation (9) based on the Wallis flooding equation is rewritten as
the following expression:
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where Cw
2 uses Eq. (17). In Fig. 11, the present data are compared with Nejat’s Eq. (12) with the term

4(Dhe /LC,B)1.396, since the values obtained by using Eqs. (9) and (10) scatter slightly as shown in Figs. 5
and 9. The values of Nejat’s parameter q*

C,N for the flooding CHF predicted using Eq. (17) for Cw
2 is

represented by a solid line in the figure because it does not quite present the scattering of the
calculated values. The solid line shows excellent agreement with the present data. Figure 12 shows the
comparison of the CHF predicted by Eq. (18) with the present CHF data. Equation (18) with Eq. (17)
for Cw

2 predicts the present flooding CHF within an RMS error of 9.0 %. In practical application, since
Equation (18) includes the unknown parameter LC,B , for a given pressure, the axial heat flux
distribution shape and geometry, the CHF value may be calculated by iteration using the relationship
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Zsat
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1 , where Zq  is the average heat flux from Zsat to location Z. However, the term

Dhe /LC,B in Eq. (18) may become the different functional form according to the axial heat flux shape
condition. Hence, the further analytical studies for predicting the location of the flooding CHF are
required.

5. Conclusions

The experimental study of water CHF under zero flow conditions were carried out in an annulus
flow channel with uniformly and non-uniformly heated sections over a pressure range of 0.52 to 14.96
MPa. The present experimental data are compared with several existing flooding CHF expressions.
The following conclusions can be drawn from this study:

(1) When Eq. (14), based on the Kutateladze flooding criterion, and Imura et al.’s correlation are

used with Park et al.’s correlation for Cw
2, the parameter ∗

kCq ,  gives reasonable agreement with the
present data. However, the discrepancy due to the effect of the heat flux distribution cannot be
improved.

(2) The density term in Park et al.’s correlation for Cw
2 was corrected corresponding to the present

condition and the correction term (Dhe /LC,B)1.396 was proposed in order to take into account the effect of
the heat flux distribution on the CHF. Equation (18) based on the Wallis flooding equation with Eq.
(17) for Cw

2 predicts the measured flooding CHF within the RMS error of 9.0 %.

Nomenclature

AB         heated area of the boiling length, m2

Af cross sectional flow area of a channel, m2

Bo Bond number, Dhy(g∆ρ/σ)1/2

Ck constant in the Kutateladze flooding criterion
Cw constant in the Wallis flooding equation
D tube inner diameter, m
Dhe heated equivalent diameter, m
Dhy hydraulic equivalent diameter, m
D* dimensionless diameter, Dhy/λ
d heater rod diameter, m
g gravitational acceleration, m/s2

hlg latent heat of evaporation, kJ/kg
∆hsub subcooling enthalpy at the bottom end of the heated section, K
j superficial velocity, m/s
j* dimensionless superficial velocity, jρ1/2(gD∆ρ)-1/2

K Kutateladze number, jρ1/2(gσ∆ρ)-1/4

LC,B length from the onset of saturated boiling to the location of CHF occurrence, m
LB boiling length in the heated section, m
Lh heated length, m
LZ length from the bottom end of the heated section to location Z, m
m constant in the Wallis equation and Kutateladze criterion for flooding



P pressure, MPa
∆P differential pressure, kPa
q(z) axial heat flux profile of the heater rod, kW/m2

qave average heat flux over the heated section, kW/m2

qC,B average critical heat flux over the boiling length, kW/m2

qC,ax critical heat flux in the axial direction, kW/m2

qZ average heat flux from Zsat to location Z, kw/m2

q*
C,k dimensionless CHF parameter in Eqs. (10), (14) and (15) , qC,B /[hlg(gσρg

2∆ρ)1/4 ]
q*

C,N dimensionless CHF parameter in Eq. (12), qC,B /[hlgρg(gDhy)1/2 ]
q*

C,w dimensionless CHF parameter in Eq. (9), qC,B /[hlg(gDhyρg∆ρ)1/2 ]
∆Tsub subcooling temperature at the bottom end of the heated section, K
Z distance from the bottom end of the heated section, m

Greek symbols

α average void fraction from the bottom end of the heated section to location Z
α average void fraction for the saturated condition at the bottom end of the heated
       section
λ length scale of Taylor instability, (σ/g∆ρ)1/2, m
ρ density, kg/m3

∆ρ density difference of liquid and vapor phase, ρ l - ρg , kg/m3

σ surface tension, N/m
ξ dimensionless parameter in the flooding CHF equations, [1+(ρg /ρl)1/4 ]-2

Subscripts

C critical heat flux
B boiling length
g vapor phase
exp experiment
k Kutateladze’s flooding criterion
l liquid phase
N Nejat’s correlation
Pred prediction
sat saturation condition
sub subcooled condition
w Wallis’s flooding equation
Z location in the axial direction from the bottom end of the heated section
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        Table 1. Ranges of the present experimental data and applicable ranges
              of the Park et al. [18] correlation (Eq. (16)) for Cw

2

Present work Park et al. [18]

Test section Geometry annulus Round tubes, annuli and
rectangular channels

Fluid water water and Freon 113

Hydraulic equivalent
Diameter (Dhy)

9.86 mm 4.8~17.2 mm

Length to diameter ratio
(LB /Dhe)

48.0~59.8 8.1~120.0

Liquid to vapor ratio
(ρl /ρg)

6.2~335.6 200~1600

Bond number (Bo) 4.25~10.0 1.79~17.3



Fig. 1. Test section geometry and the locations of measuring sensors – (   ) denote the thermocouple
locations of the heater rod with non-uniform heat flux distribution

Fig. 2. Heat flux distribution of the non-uniform heater rod
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Fig. 3. Physical model of the present boiling system

Fig. 4. Relationship of the pressure drop (∆Pm-2) and the subcooling temperature
at the bottom end of the heated section
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Fig. 5. Comparison of the present data with Mishima and Nishihara’s equation (Eq. (10))

Fig. 6. Comparison of the present data with Nejat’s equation (Eq. (12))
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Fig. 7. Comparison of the present data with Tien and Chung’s equation (Eq. (14))

Fig. 8. Comparison of the present data with Imura et al.’s correlation (Eq. (15))
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Fig. 9. Comparison of the present data with the modified Wallis flooding CHF correlation

Fig. 10. Comparison of the present data with the modified Kutateladze flooding CHF
correlation
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Fig. 11. Comparison of the present data with the modified Nejat equation

Fig. 12. Comparison of the present CHF with the CHF predicted by Eq. (18) with Eq. (17)
for Cw
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