KALIMER

Seismic Response Analysis for Isolators and Upper Basemat of KALIMER Reactor Building

, ,

150

.

, カ .

Abstract

The axial loads on the isolators supporting the upper basemat of KALIMER reactor building are changeable according to the weight distribution of the reactor building, so the unbalances of deflections and stresses on upper basemat should be reduced by optimal arrangement of isolators. For evaluating the phenomena, the axial forces on the isolators and the stresses on the upper basemat induced by dead weight and seismic loads are calculated using the finite element modeling of the reactor building and the isolators properly arranged. The torsional displacement and the structural integrity of upper basemat are also evaluated.

1.

가 ,

KALIMER 가

[1,2]. 가

KALIMER ,

, 가

가 .

2.

52m x 39m 가 4m . 가 1.5m

, プ 0.5Hz 3

. 1.2m

2.0m . 320 , 가 5 3

KALIMER 166 . 166

2.0m ,

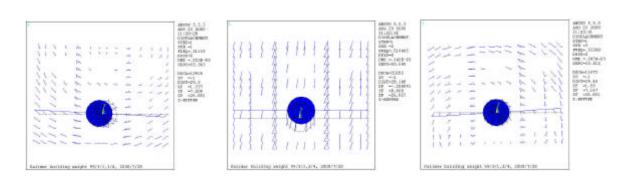
4 .

174

3. KALIMER

KALIMER

5 ANSYS


, [3].

	Number	Description
	1-120	
AREA	121-134	SG
	135-170	
	1-3058	
NODE	4001- 4238	
ELEMENT	1-104	(STIF4)
	105-399	(SHELL63)
	400-578	(SHELL63)
	578-2392	(SHELL63)
	2393-3208	(SHELL63)
	3901-3916	(MASS21)
	4001-4221	(STIF4)
	4301-5082	(COMBIN14)

4.

2. KALIMER

MODE	FREQUENCY	EFFECTIVE MASS (X)	EFFECTIVE MASS (Y)	EFFECTIVE MASS (Z)
1	0.511	0.3178E+08	0.4182E+06	Small
2	0.519	0.6557E+06	0.5072E+08	Small
3	0.533	0.1984E+08	0.2376E+06	Small

6.

6.15m 19.6m

UBC (Uniform Building Code,[6])

1.345m

(e)**(y)**

 $(D_{\scriptscriptstyle TM})$

$$D_{TM} = D_M \left(1 + y \frac{12e}{b^2 + d^2} \right)$$

 $(y=31,e=1.345), D_{TM}$

KALIMER
$$(y=31,e=1.345)$$

= $D_M \left(1+31\frac{12(1.345)}{50^2+39^2}\right)$
= $D_M \left(1+0.124\right)$

가 12.4% 가

가

5.

MPa

6.

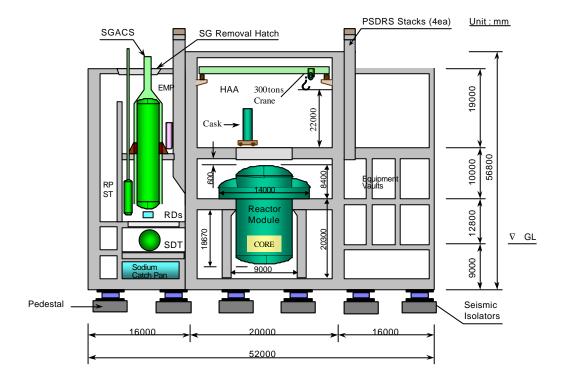
390 2
$$7$$
 . 320 \pm 60

137 (78%)가 37 , 32

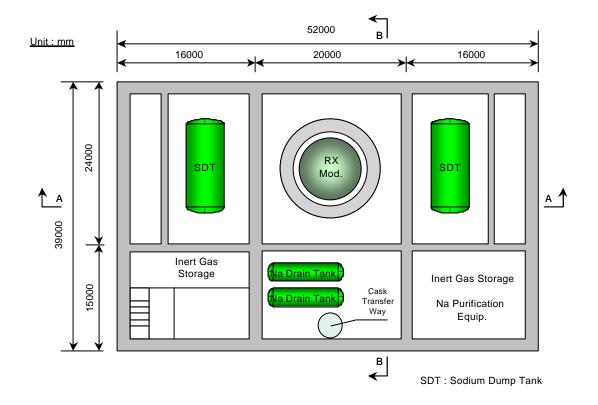
1 mm6.28Mpa

8 . RC 24MPa (240kg/cm²) 6.28

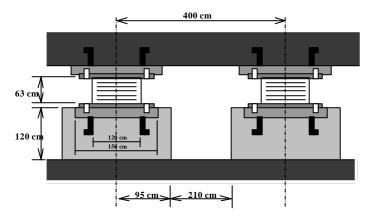
가

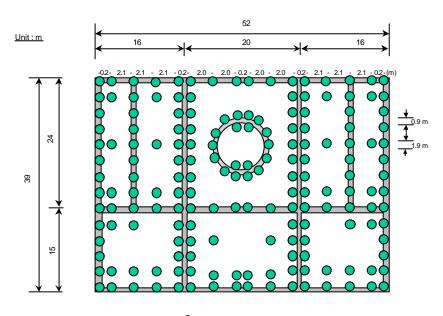

가

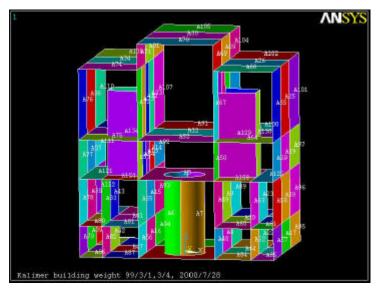
ASCE RG 1.6 0.3g

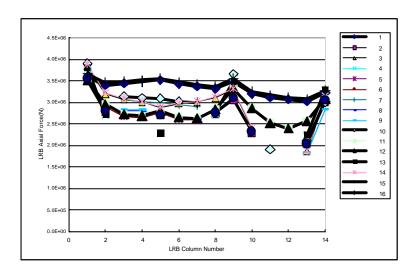

9

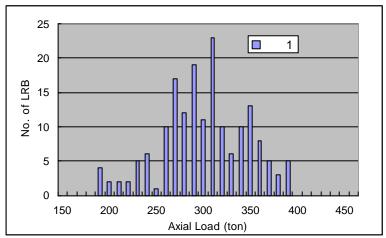
	174				26 ,	52	28	
가	20			320 ± 60			33 (18%)가	,
		141	. 15			, 126		
						,		
1mm	,		5.67Mp	a		10		
	6	0cm ,		200%				가
	가		12%					
7.								
							,	
			174				390 ,	
184						2	,	
				528	26			20
							,	
	1mm	,		6.28 MPa				,
		5.62M	pa					
	,							
1.	,	, "]	KALIMER					
	,",	,	99	, 1999.				
2.	,	, , , ,	KALIMER				3	,
K	AERI/TR-15	39/2000,		, 2000.				
3.	, ,	, KA	LIMER				,	KAERI/TR-
10	62/98,		, 1998.					
4.	, ,	,						
	, KAERI/T	R-809/97,		, 1997.				
5. C.K	K. Park, et. al	. KALIMER I	Design Concep	ot Report, KAI	ERI/TR-88	88/97, KAE	RI, 1997.	
6. R.S	S. Jangid, and	J.M. Kelly, "	Torsional Disp	olacements in	Base-Isola	ated Buildin	gs," Earthquake	Spectra, Vol.

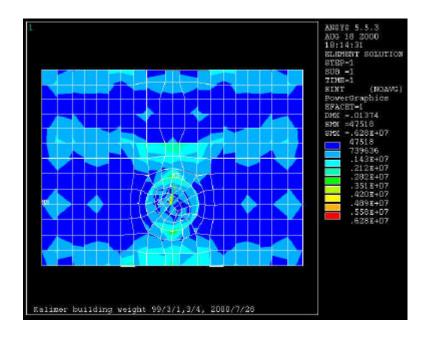

12 No.2,May 2000.

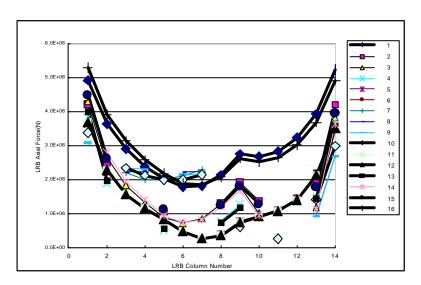

1. KALIMER


2. KALIMER




3.




320 ton / pedestal (x 174)

