`2000

$(Th,U)O_2$

Irradiation Characteristics of (Th,U)O₂Fuel in LWR

105 , 305-600 $(Th,U)O_2$ 가 가 . $(Th,U)O_2$ Th-232 U-233 30 MWD/kgU 가 , $(Th,U)O_2$. ThO₂ UO_2 가 가 가 가 U-238 UO_2 Rim effects $(Th,U)O_2$ 가 UO₂

ABSTRACTS

Neutronic depletion characteristics and in-pile behavior of $(Th,U)O_2$ fuel mixed with U-235-enriched uranium during the irradiation in LWR were evaluated. It was found that U-233 bred from Th-232 would become a primary fissionable nuclide at the burnup higher than 30 MWD/kgU in $(Th,O)_2$ fuel. Since the thermal conductivity and melting temperature of ThO₂ are higher than UO₂, and local burnup enhancement near the periphery of the $(Th,U)O_2$ pellet is much smaller than UO₂ due to lower concentration of U-238, irradiation performance including Rim effects of $(Th,U)O_2$ fuel at high burnup is expected to be better than UO₂ fuel.

1.

1 ThO₂-25% UO₂(19.5 w/o U-235)

2 ThO₂-25% UO₂(19.5 w/o U-235)

Th-232 U-233 U-235 3 가 UO₂(4.875 w/o U-235) ThO2-25 % UO2(19.5 w/o U-235) U-235 가 . ThO₂-25 %UO₂ UO_2 Pu-239 Pu-241 , U-235 Pu-238 ThO₂-25% UO₂ 가 Pu-239 Pu-238 UO_2

3. 가

ThO₂-UO₂ 70 MWD/kgU-rod avg. 4 5 $(Th,U)O_2$. $(Th,U)O_2$ UO₂ 15-35 % $(Th,U)O_2$ Pu-239 . 가 U-238 가 UO, 가 가 U-235 6 ThO₂-25% UO₂(19.5 w/o U-235) UO2 (4.875 w/o U-235) , ThO₂-가 가 UO_2 UO_{2} . ThO₂-25%UO₂ 7 8 $(\mathbf{F}_{\mathbf{p}})$ (F_{BU})

$$\begin{split} F_p(r,BU) &= -6.6837 + 0.267 \text{ BU} - 4.2542\text{E-6 BU}^2 + (3.2032 - 0.0655 \text{ BU} + 2.8715\text{e-4 BU}^2) \text{ r} \\ &- (16.422 + 0.0368 \text{ BU} + 1.4236\text{E-3 BU}^2) \text{ r}^2 + (25.0378 + 0.073 \text{ BU} + 2.4776\text{E-3 BU}^2) \text{ r}^3 \\ &- (22.1305 + 0.192 \text{ BU} + 1.4009\text{E-3 BU}^2) \text{ r}^4 + (11.5112 + 0.2137 \text{ BU}) \exp(-3.8935(1\text{-r})) \\ &+ (6.5873 - 0.2481 \text{ BU}) \exp(0.0977(1\text{-r})^2) \end{split}$$

$$\begin{split} F_{BU}(r,BU) &= -16.8254 + 0.6736 \text{ BU} - 9.7069\text{E-6 BU}^2 - (2.5298 + 0.2733 \text{ BU} - 2.4955\text{e-4 BU}^2) \text{ r} \\ &- (30.5319 + 0.0656 \text{ BU} + 1.0935\text{E-3 BU}^2) \text{ r}^2 + (23.4042 - 0.0579 \text{ BU} + 1.713\text{E-3 BU}^2) \text{ r}^3 \\ &- (32.4645 + 0.239 \text{ BU} + 8.8522\text{E-4 BU}^2) \text{ r}^4 + (47.2434 + 0.6145 \text{ BU}) \exp(-2.6379(1\text{-r})) \\ &+ (12.7968 - 0.646 \text{ BU}) \exp(0.1058(1\text{-r})^2) \end{split}$$

, r = normalized radius, BU = (MWD/kgU).

 UO_2

가	가 70 MWD/kgU	, UO ₂
가	가	Rim effects 가

3 ThO₂ - 25% UO₂(19.5 w/o U-235) UO₂(4.895 w/o)

4 ThO₂-UO₂(19.5 w/o U-235)

5 ThO₂-UO₂(19.5 w/o U-235)

6 ThO₂ - 25% UO₂(19.5 w/o U-235) UO₂(4.895 w/o U-235)

7 ThO₂ - 25% UO₂(19.5 w/o U-235)

8 ThO₂ - 25% UO₂(19.5 w/o U-235)

가

 UO_2 가 가 • $(Th,U)O_2$ Rim effects 가 UO_2 • Rim effects , ThO₂-UO₂ Rim [4]. 70 MWD/kgU Rim Rim . [5,6], Rim Rim UO₂ Matrix 가 [7,8]. 가 가 Rim UO₂ 가 ThO₂ 9 UO_2 , ThO₂ $(Th,U)O_2$, K(w/mK) [9]. K = 1/(A + BT), $A = 1/(A_0 + A_1M),$ $\mathbf{B} = \mathbf{B}_0 + \mathbf{B}_1 \mathbf{M} + \mathbf{B}_2 \mathbf{M}_2.$

, $A_0 = 46.947$, $B_0 = 1.597E$ -4, $A_1 = -112.072$, $B_1 = 6.736E$ -4, $B_2 = -2.156E$ -3, M = Mole fraction of UO_2 ., T = (K).

1000 K	ThO ₂	5.52 w/mK	UO ₂ 3.8	5 w/mK	43 %	,
	ThO ₂ -25%U	O_2	4.06 w/mK	UO_2	5 %	
		가 5 %	가			
		3%	,			가
		10 %				ThO ₂
	3367 °C , U	O ₂ 2847 °C	[9].	ThO_2		
가 UO ₂	2	, (Th,U)O ₂			UO_2	
	, UO ₂	가	U-235			
	, (Th,U)O ₂		U-233			
				, (Th.	U)O ₂	70 – 100

, (Th,U)O₂ 70 – MWD/kgU .

9 ThO₂-(10-30%)UO₂ [9]

4.

(1) A. Galperin and A. Radkowsky, A Competitive Thorium Fuel Cycle for Pressurized Water Reactors", Proc.

of the Ninth Intnl. Conf. On Emerg. Nuc. Ener. Systems(ECENES 198), Israel, 1998.

- (2) J.S. Herring and P.E. MacDonald, "Mixed Thorium-Uranium Dioxide Fuel for High Burnup in Light Water Reactors", Proc. of Future Nuclear System Global-99, Wyoming, 1999.
- (3) "HELIOS Program Description", Scanpower, 1994.
- (4) C.B. Lee and Y.H Jung, "An Attempt to Explain the high burnup structure formation mechanism in UO₂ fuel", J. of Nucl. Mater. 279, p.207, 2000.
- (5) J. Spino, et al., "Detailed characterization of the rim microstructure in PWR fuels in the burnup range 40-67 GWd/tM", J. Nucl. Mater. 231(1996)179.
- (6) R. Manzel and C.T. Walker, "High burnup fuel microstructure and its effect on fuel performance", Intnl. Top. Meeting on LWR Fuel Performance, Utah, April, 2000.
- (7) C.B. Lee, et al., "Development of Irradiated UO₂ Thermal Conductivity Model", IAEA TCM on Nuclear Fuel Behavior Modeling at High Burnup and its Experimental Support, Windermere, UK, June, 2000.
- (8) M. Kinoshita, et al., "High burnup rim project (II) irradiation and examination to investigate rim structured fuel", Intnl. Top. Meeting on LWR Fuel Performance, Utah, April, 2000.
- (9) J. Belle and R.M. Berman, Thorium Dioxide : Properties and Nuclear Applications, DOE/NE-0060, USDOE, 1984.