
Proceedings of the Korean Nuclear Society Autumn Meeting

Taejon, Korea, October 2000

SIS-RT: An Integrated Software Inspection Support and Requirement
Traceability Tool

Han Seong Son, Seo Ryong Koo, and Poong Hyun Seong

Korea Advanced Institute of Science and Technology

Department of Nuclear Engineering

373-1 Kusong-dong, Yusong-gu, Taejon, Korea 305-701

Dae Seong Son and Seong Soo Choi

Atomic Technology International

KAIST HTC #4408

62-1 Hwam-dong, Yusong-gu, Taejon, Korea 305-348

Abstract

This article introduces a computer-aided software inspection support tool, SIS-RT, which has

requirement traceability analysis capability. Inspection and requirement traceability analysis are widely

believed to be the most effective software verification and validation methods. These techniques are

labor-intensive and thus require to be partially automated. SIS-RT is designed to partially automate the

software inspection process and requirement traceability analysis. This tool is on the construction. After

further development efforts, SIS-RT will turn out to be a unique and promising software verification and

validation tool.

I. Introduction
Inspection is widely believed to be an effective software verification and validation (V&V) method. It

can provide a great increase in both productivity and product quality, by reducing development time, by

removing more defects than is possible without using inspection, respectively. Inspection applies to the

whole lifecycle. By inspecting products as early as possible, major defects will be revealed sooner and

will not be propagated through to the final product.

However, software inspection has been found to be difficult to put into practice [1]. This can be

attributed to several factors [2]. Software inspection is labor-intensive, and it can be difficult to justify the

investment in time and money to introduce it. Although the investment is reasonable when compared with

the benefits, there may be a reluctance to devote the resources necessary to them, especially part way

through a project when progress has shipped behind schedule. This labor-intensive nature is compounded

by a view that since software inspection uses little technology, they do not fit in well with a more

technology-oriented development environment. These problems are mainly due to a lack of understanding.

Many software engineers have heard of software inspection, but fewer know enough detail to be able to

implement it. They are aware of the often-quoted benefits, but are unwilling to risk implementing

inspections. They feel much more secure with traditional methods such as testing. Another obstacle for

software inspection is that they are difficult to implement properly. If implemented wrongly, they will

produce poor results, in comparison with the effort expended. When this happens, people are discouraged

from using inspections again, and apocryphal tales of how “inspection was disaster for us” soon spread.

However, software inspection is gaining in popularity. More people are using it and gaining benefit

from it. At the same time, new variations are being created which are tailored for certain types of products

or for use under certain circumstances. In order to promote the application of software inspection, the

authors are developing a software inspection support tool, SIS-RT. SIS-RT is designed to partially

automate the software inspection process that is labor-intensive.

Requirement traceability analysis is to identify requirements that are either missing from, or in

addition to, the original requirements. The requirement traceability applied to the software architecture

phase can aid in identifying requirements that have not been accounted for in the architecture. Stepwise

refinement of the requirements into the architecture produces a natural set of mappings from which to

derive the requirement traceability. For large systems, automation is desirable. In this work, requirement

traceability analysis is considered as one of the items of software inspection. This is the motivation of

integrating requirement traceability analysis capability into the software inspection support tool. SIS-RT

is on the construction. After further development efforts, This tool will turn out to be a unique and

promising software verification and validation tool.

II. Introduction to Software Inspection
Since M.E. Fagan first defined the software inspection process in 1976 [3], there have been many

variations of software inspection [4, 5]. We describe here the original method.

II-1. Inspection Team

An inspection team generally consists of four to six people. Each person has a well-defined role as

follows:

Moderator: The moderator is the person in overall charge of the inspection. It is the moderator’s task to

invite suitable people to join the inspection team, distribute source materials and to organize and

moderate the inspection meeting itself.

Author: The inspection requires the presence of the author of the product under inspection. The author

can give invaluable help to the inspectors by answering questions pertaining to the intent of the document.

Reader: During the inspection meeting, it is the reader’s job to paraphrase out loud the document under

inspection.

Recorder: It is the recorder’s duty to note all defects found along with their classification and severity.

Although Fagan indicates that this task is accomplished by the moderator, another member of the team is

usually chosen, since the workload involved can be quite high, though mainly secretarial. The recorder is

often known as the scribe.

Inspector: Any remaining team members are cast as inspectors. Their only duty is to look for defects in

the document.

II-2. Inspection Process

Fagan describes five stages in the inspection process:

Overview: The entire team is present during the overview. The author describes the general area of work

then gives a detailed presentation on the specific document he has produced. This is followed by

distribution of the document itself and any necessary related work to all members.

Preparation: Each team member carries out individual preparation, consisting of studying the document to

gain an understanding of it. Errors in the document will be found during this stage, but in general not as

many as will be found at the next stage. Checklists of common defect types can help the inspectors

concentrate on the most beneficial areas of inspection. Each inspector produces a list of comments about

the document, indicating defects, omissions and ambiguities.

Inspection: The inspection meeting involves all team members. The reader paraphrases the document,

covering all areas. During this process inspectors can stop the reader and raise any issue until a consensus

is reached. If an issue is agreed to be a defect, it is classified as missing, wrong or extra. Its severity is

also classified (major or minor). At this point the meeting moves on. No attempt is made to find a solution

to the defect; this is carried out later. After the meeting, the moderator writes a report detailing the

inspection and all defects found. This report is then passed to the author for the next stage.

Rework: During rework, the author carries out modifications to correct all defects found in the document

and detailed in the moderator’s report.

Follow-Up: After the document has been corrected, the moderator ensures that all required alterations

have been made. The moderator then decides whether the document should be re-inspected, either

partially or fully.

III. Features for Tool Support
Manual software inspection is labor intensive. By automating some pats of the process and providing

computer support for others, the inspection process has the capability of being made more effective and

efficient, thus providing even greater benefits than are normally achieved.

A desirable attribute of inspections is rigor. Using computers to support the process helps provide this

rigor, and improves the repeatability of the inspection process. Repeatability is essential if feedback from

the process is to be used to improve it. In this section we describe some features of inspection that are

suitable for the application of tool support that was suggested in [6].

Document Handling: The most obvious area for tool support is document handling. Traditional software

inspection requires the distribution of multiple copies of each document required. Apart from the cost and

environmental factors associated with such large amounts of paper, cross-referencing from one document

to another can be very difficult. Since most inspection documents are produced on computer, it is natural

to allow browsing of documents online. Everyone has access to the latest version of each document, and

can cross-reference documents using, for example, hypertext. Furthermore, documents should not be

restricted to text only. The ability to inspection diagrams, as well as use them as supporting

documentation, is invaluable. These features demonstrate that computerizing documents is not simply a

medium change, but provides an opportunity to enhance the presentation and usability of those

documents.

The comments produced by inspectors (also known as annotations) are a major part of the inspection

process, as they indicate when an inspector takes issue with a part of the document. In the traditional

inspection, they are recorded on paper. Computer support allows them to be stored on-line, linked to the

part of the document to which they refer. They can then be available for all inspectors to study both

before and, more importantly, during the inspection meeting.

Individual Preparation: There are several ways in which tool support can assist in individual preparation,

in addition to the document handling and annotation facilities described above. Automated defect

detection can be used to find simple defects such as layout violations. This type of defect, while not being

as important as such items as logic defects, must still be found to produce a correct document. If finding

them can be automated, inspectors can concentrate on the more difficult defects that cannot be

automatically found and that have a greater impact if not found. This may be achieved by the introduction

of new tools, or the integration of the inspection environment with existing tools. The latter is obviously

preferable. There are various levels of integration, from simply reporting defects to actually producing

relating to the defect for the reviewer to examine.

Computer support can provide further help during individual preparation. Generally, inspectors make

use of checklists and other supporting documentation during this stage. By keeping these on-line, the

inspector can easily cross-reference between them. On-line checklists can also be used by the tool to

ensure that each check has been applied to the document, thereby enforcing a more rigorous inspection,

while on-line standards, such as those pertaining to the layout of documents, assist the inspector in

checking a document feature for compliance.

Meeting Support: Intentionally, or otherwise, some members of the team may not spend sufficient time on

individual preparation, but will still attend the group meeting and try to cover up their lack of preparation.

Inevitably, this means that the inspector in question will have little to contribute to the group meeting,

thus wasting both the group’s time and the inspector’s time. Computer support can help avoid this

situation by monitoring the amount of time spent by each inspector in preparation. The moderator can use

this information to exclude anyone who has not prepared sufficiently for the group meeting, or to

encourage him or her to invest more effort.

Since the guidelines state that a meeting should last for a maximum of only two hours [3], it may take

many meetings to complete an inspection. There is a large overhead involved in setting up each meeting,

including finding a mutually agreeable time, a room to hold the meeting and so forth, and there is also an

overhead involved for each participant travelling to the meeting. By allowing a distributed meeting to be

held using conference technology, it may be easier for team members to ‘attend’ the meeting using any

suitably equipped workstation. Furthermore, use can be made of existing electronic meeting support, such

as that described by Nunamaker et al [7]. When a distributed meeting is taking place, it can sometimes be

useful to conduct polls to quickly resolve the status of an issue. This is especially important if the meeting

is being held in a distributed environment. Automatic support for this can greatly increase the productivity

of a meeting.

Data Collection: An important part of inspection is the collection of metrics which can be used to provide

feedback to improve the inspection process. The metrics will include such data as time spent in meeting,

defects found, overall time spent in inspection and so forth. Collecting these metrics is time consuming

and error-prone when carried out manually, so much so that Weller states [8]:

“… you may have to sacrifice some data accuracy to make data collection easier… ”

This is obviously undesirable. Computer support allows metrics from the inspection to be automatically

gathered for analysis. This removes the burden of these dull but necessary tasks from the inspectors

themselves, allowing them to concentrate on the real work of finding defects. Furthermore, the computer

can often be used for analyzing these metrics with little further work. This is unlike manual data

collection, where the data has to be entered before it can be analyzed. Automated data collection has the

advantage of being less defect-prone than manual counterpart, with the added bonus of being capable of

providing more finely grained data.

IV. SIS-RT
In this section we describe SIS-RT, which is a computer-aided software inspection support tool

developed in this work. SIS-RT stands for Software Inspection Support and Requirement Traceability. As

mentioned before, we have integrated requirement traceability analysis capability into the software

inspection support tool because requirement traceability analysis is considered as one of the items of

software inspection. SIS-RT is designed to support inspection of all software development products. In

addition, SIS-RT is a PC-based application designed for use by anyone who needs to manage

requirements. It supports an extraction function that reads a text file and copies paragraph numbers and

requirement text to a SIS-RT file. It can read any text data that is convertible to ‘.txt ’ format. It also

supports manual addition of individual requirements and import from various formats.

SIS-RT permits users to associate database items by defining attributes; attributes attached to

individual database items provide a powerful means to identify subcategories or database items and

manage requirements. SIS-RT supports normal parent/child links to manage requirements. Furthermore, it

supports peer links between items in the database and general documents to provide an audit trail showing

compliance to quality standards or contractual conditions.

Figure 1 shows a screen shot of the requirement extraction function of SIS-RT. SIS-RT reads source

document, identifies requirement, and extracts them for import into the database. SIS-RT automatically

finds and extract requirements based on a set of keywords defined by the user. As requirements are found,

they are highlighted as shown in Figure 1. The user may also manually select and identify requirements.

SIS-RT enables us to produce a user-defined report that shows various types of inspection results. Users

build up the architecture of the reports that they want to produce on the right-hand side window shown in

Figure 1. If a user write down checklists in the window, SIS-RT can directly support the software

inspection with this functional window.

As mentioned before, SIS-RT supports normal parent/child links and peer links between items in the

database and general documents. This is a function related to requirement traceability analysis. Figure 2

shows a screen shot representing the requirement traceability function of SIS-RT. Figure 2 shows that

SIS-RT provides mechanisms to easily establish and analyze traceability through the real-time visual

notification of change. This capability allows users to pinpoint its impact across the project and assess

coverage for verification and validation.

Another function of SIS-RT is supporting software inspection meeting. In order to allow a distributed

meeting to be held, SIS-RT introduces a conference technology based on the web technique. Through the

web site shown in Figure 3, the moderator can prepare an inspection meeting and the inspectors presents

their inspection results.

Now we describe SIS-RT in view of the features of tool support enumerated in Section III.

Document Handling: SIS-RT supports document handling very well. It supports cross-referencing from

one document to another. As mentioned before, since most inspection documents are produced on

computer, it is natural to allow browsing of documents online. Everyone has access to the latest version of

each document, and can cross-reference documents using, for example, hypertext. SIS-RT has all these

features. SIS-RT can deal with the comments produced by inspectors. They are a major part of the

inspection process, as they indicate when an inspector takes issue with a part of the document. SIS-RT

allows the comments to be stored on-line, linked to the part of the document to which they refer. They can

then be available for all inspectors to study both before and, more importantly, during the inspection

meeting.

Individual Preparation: SIS-RT does not have the ability of automated defect detection yet. However,

finding them automatically enables inspectors to concentrate on the more difficult defects that cannot be

automatically found and that have a greater impact if not found. Thus we are planning to include this

capability into SIS-RT.

As mentioned before, computer support for software inspection can provide further help during

individual preparation in that, by keeping the checklists on-line, the inspector can easily cross-reference

between them. On-line checklists can be used by SIS-RT to ensure that each check has been applied to the

document. In addition, on-line standards in SIS-RT can assist the inspector in checking a document

feature for compliance.

Meeting Support: SIS-RT can help avoid taking many meetings to complete an inspection. By allowing a

distributed meeting to be held using web meeting technology, it becomes easier for team members to

‘attend’ the inspection meeting.

Data Collection: Computer support allows metrics from the inspection to be automatically gathered for

analysis. This is a very important aspect. SIS-RT, however, does not have the data collection capability.

Further development effort for SIS-RT will bring the ability of data collection to it.

V. Conclusions
In this study we developed SIS-RT, which is a computer-aided software inspection support tool. SIS-RT

also has requirement traceability analysis capability. Inspection and requirement traceability analysis are

widely believed to be the most effective software verification and validation methods. These techniques,

however, are labor-intensive. Therefore, it is required to automate the activities even partially. SIS-RT is

designed to partially automate the software inspection process and requirement traceability analysis. This

tool is on the construction. After further development efforts, SIS-RT will turn out to be a unique and

promising software verification and validation tool.

[References]

[1] A. F. Ackerman, L.S. Buchwald, F.H. Lewski, “Software Inspections: An Effective Verification

Process,” IEEE Software, Vol. 6, No. 3, pp. 31-36, May 1989.

[2] G.W. Russell, “Experience with Inspections in Ultralarge-Scale Developments,” IEEE Software, Vol.

8, No.1, pp. 25-31, January 1991.

[3] M.E. Fagan, “Design and Code Inspections to Reduce Errors in Program Development,” IBM system

Journal, Vol. 15, No. 3, pp. 182-211, 1976.

[4] Tom Gilb and D. Graham, Software Inspection, Addison-Wesley, 1993.

[5] W.S. Humphrey, Managing the Software Process, Addison-Wesley, 1989.

[6] F. Macdonald, J. Miller, A. Brooks, M. Roper, M. Wood, “A Review of Tool Support for Software

Inspection,” EfoCS-6-95, January 1995.

[7] J.F. Nunamaker, A.R. Dennis, J.S. Valaich, D.R. Vogel, J.F. George, “Electronic Meeting systems to

Support Group Work,” Communications of the ACM, Vol. 33, No. 2, July 1991.

[8] E.F. Weller, “Lessons from Three Years of Inspection Data,” IEEE Software, Vol. 10, No. 5, pp.

38-45, September 1993.

Figure 1. Requirement Extraction in SIS-RT

Figure 2. Requirement Traceability Analysis in SIS-RT

Figure 3. Inspection Meeting Support in SIS-RT

	분과별 논제 및 발표자

