

Development of Prediction Technique of CHF Inside a Non-Uniformly Heated Vertical Annulus Under Flow Transient Using MARS

Abstract

The critical heat flux (CHF) model in the thermal analysis code MARS is assessed with the experimental data obtained inside a nonuniformly heated vertical annulus under flow transient. The critical heat flux model in MARS, which is developed in circular pipe geometry, is found to overpredict the experimental data in vertical annulus geometry. Under flow transient conditions, MARS predicts that critical heat flux occurs at lower mass flux than the experimental value. The annular flow regime, in which the separated liquid films flow on heated and unheated walls, is obtained in the heated vertical annulus test section. When the liquid film on the heated inner wall is dried out critical heat flux occurs. However, MARS does not consider the liquid film separation in a pipe component so that it predicts thicker liquid film than the real situation. It makes MARS ovepredict critical heat flux, resulting in the time-delay in the estimation of CHF under flow transient conditions. In order to overcome the poor prediction of CHF, double-pipe-components modeling method is tried. It enhances the predictability of CHF, but its results are highly dependent on the flow loss coefficients of the branches that link the adjacent volumes of double-pipe-components. However, when the inlet mass flux is assumed to be splitted at the same fraction to the area fraction of double-pipes and flow upward inside a single pipe component, the prediction of CHFs is found to agree with the experimental data reasonably.

1.

, 7ł , , , , , , , , , 7ł , , , , 7ł , , , 7ł , , 7ł , (Symmetric Cosine Distribution) , , (, 1999; , 1999) 3/4

Flow Coastdown , Flow Coastdown

(, 2000)						
		MARS		(1-D)		가	
					,		
	,						
	,		•				

2. 가

	1 71									
Run no.	P (kPa)	G _{in} (kg/m²-s)	G _{CHF} (kg/m ² -s)	Dh _{in} (kJ/kg)	Q (kW)	CHF (kW/m²)				
FT-A-1-F	1907.4	650	205.117	217.135	36.8	667.455				
FT-A-4-F	1895.0	650	222.954	360.266	45.3	820.686				
FT-A-11-F1	1847.2	650	419.153	92.018	53.3	966.776				
FT-B-2-F	5882.9	650	245.249	210.985	45.9	832.502				
FT-B-7-F	5847.8	650	325.513	81.328	46.3	839.317				
FT-B-9-F	6079.0	650	231.872	363.023	53.3	966.396				
FT-B-11-F	5887.6	650	436.989	353.628	77.7	1408.092				
FT-C-3-F	549.7	650	521.712	342.035	56.0	1014.748				
FT-C-4-F	552.7	650	267.545	206.735	34.9	633.003				

DCC	
RUS	

. (Chun et al. 2000; , 2000) 9.53mm 가 19.4mm 1843mm 가 가 MARS fast, normal, slow 가 , normal 3/4 Coastdown , fast normal slow 가

fast normal

가	fast		,
		가	1

3. MARS 가

MARS Groeneveld AECL-UO CHF Lookup Table . (Ransom et al. 1995) Table 8mm 가 , Lookup Table 15000 0.1 20 Mpa 15 , 14가 1.0 21가 0.0 7500 kg/s-m^2 -0.5 . Table CHF Geoeneveld (1) Table

$$CHF = CHF_{table} \times chfmul, \qquad (1)$$

chfmul Table (2) .(Ransom et al. 1995)

$$chfmul = k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_6 \times k_8 \tag{2}$$

0

t=40 3 MARS .

150 , 11 3 30 t=100 t=68 4 4 t=50 가 (Subcooled nucleate boiling) (Saturated nucleate boiling) 1.0 . . 가 가 가 가 가 MARS 1-D . 가 4.2 #2 가 MARS 5 #2 #2 가 가 . 가 #2 가 1) . $A_{_{inner}}$ = 9.300 x 10 $^{-5}$ $\ [m^2]$ = 0.415 $A_{_{total}}$ (3) $A_{outer} = 1.313 \text{ x } 10^{-4} \text{ [m^2]} = 0.585 \text{ A}_{total}$ (4) 가 2) . 3) forward flow energy loss coefficient (kw) reverse flow energy loss coefficient (kb) (tuning factor) . 가 5 , 6 . kw=kb=0.1) (. , (cross flow) . , 가 가 가 가 , , 가 가 kw kb . 가 •

2		(Run no. : A1-F-1, T_{CHF} =68 sec, kw=0.1)					
Kw/kb	CHF	0.65852/152)	0.04929×g/s)	15009			
0.1/0.1	99.6 sec	0.65884	0.09648	15209			
0.1/10	99 C	0.65938	0.04929	15009			
0.1/10	88.6 sec	0.65970	0.09649	15209			
0.1/1000	77.0	0.66294	0.04926	15009			
0.1/1000	77.2 sec	0.66327	0.09651	15209			

3		(Run no. : A1-F-1, T _{CHF} =68 sec, kw=100)					
Kw/kb	CHF	0.8929/152)	0.0331(s ^{kg/s})	15009			
100/100	77.0 sec	0.4021	0.11261	15209			
100/1000		0.8526	0.03349	15009			
100/1000	75.2 sec	0.3976	0.11228	15209			
100/10000	74.2	0.8525	0.03361	15009			
100/10000	74.2 sec	0.3961	0.11216	15209			

2 3	(branch)			
	(kb)	152	150	(cross
flow)가	,	가	,	
	$(T_{CHF}=68 \text{ sec})$.			
가	,	가		150 152
		,		

1

•

가 . .

4.3 #3 7 #2 7 , #3 フト . , (3) フト ,

. 7 가 .

,

가.

41.5% 가 ,

.

. (A_{inner} = 9.300 x 10 $^{-5}$ m²)

, (Run no. : FT-B-7-F) 40 가

	G _{CHF} -meas.	G _{CHF} -calc.	GError	T _{CHF} -measured	T _{CHF} -calculated	T _{CHF Error}
_	4	#3				

Dunno	G _{CHF} -meas.	G _{CHF} -calc.	GError	T _{CHF} -measured	T _{CHF} -calculated	T _{CHF Error}
Kun no.	(kg/m ² -s)	$(kg/m^{2}-s)$	(%)	(sec)	(sec)	(%)
FT-A-1-F	205.117	183.032	-11.8	68.5	70.0	2.2
FT-A-4-F	222.954	232.097	4.1	67.0	66.0	-1.5
FT-A-11-F1	419.153	343.341	-18.1	54.5	61.4	12.7
FT-B-2-F	245.249	261.115	6.5	67.0	64.6	-3.6
FT-B-7-F	325.513	291.828	-10.3	61.0	63.0	3.3
FT-B-9-F	231.872	285.134	23.0	67.0	64.2	-4.2
FT-B-11-F	436.989	-	-	54.5	-	
FT-C-3-F	521.712	513.232	-1.6	49.0	49.0	0.0
FT-C-4-F	267.545	224.546	-16.1	65.0	68.2	4.9

4.

			MARS	5	가		
MARS (1-	-D)						
		가	,	#1			
(pipe component	nt)		MARS	가		,	#2
가	가						
		,	#3 가				
가 (fast, normal,	, slow)	fast フト			, 가		

1) #1 MARS

가 가

. 2)

,

Se-Young Chun, Heung-June Chung, et al. (2000), "Critical Heat Flux in Uniformly Heated Vertical Annulus Under a Wide Range of Pressures 0.57 to 15.0 Mpa," Journal of the Korean Nuclear Society, V.32, No. 2, pp128-141.

Ransom et al. (1995), "RELAP5/MOD3 Code Manual : Volume IV: Models and Correlations," NUREG/CR-5535, INEL-95/0714.

W. J. Lee, et al. (1998), "Development of a Multi-Dimensional Realistic Thermal-Hydraulic System Analysis Code, MARS 1.3 and its Verification," KAERI/TR-1108/98, KAERI.

#1

(Run no. : FT - A - 1 - F)

2

6

(Run no. : FT-A-1-F)

5

(Run no. : FT-B-7-F)

8