

Precipitation Behavior of -Hydride in Zr-2.5Nb Pressure Tube

Young Chan Suh, Soon Sam Park*, Young Suk Kim, Kyung Soo Im, Song Soo Kim Korea Atomic Energy Research Institute Zirconium Team Korea University*

Abstract

The precipitation behavior of -hydride plates in a Zr-2.5% Nb pressure tube alloys containing from 50 to 300 ppm hydrogen has been studied. -hydride is preferentially nucleated at the - interface and its growth was shown to be sensitive to the nature of the - interface. For microstructure which the continuous -Zr films have broken up partly into a series of discrete particle of the ω - or β -Nb phase, two types of hydride plate, namely the intergranular and transgranular hydride were observed. For equilibrium microstructure which the retained -Zr has completely decomposed to α and β -Nb, hydride grows across the -grain transgranular rather than along the interface. For both microstructural conditions, hydrides the appear to have the same orientation relationship, i.e. $(111)_{d}$ // $(0001)_{a}$ $[1\overline{10}]_{d}$ // $[11\overline{20}]_{a}$ and to have habit plane $\{10\overline{17}\}$ lying close to (0001).

2000

1.

Cold worked	Zr-2.5Nb		가		
	,				, 1
	가		cold worked	1 Zr-2.5Nb	delayed
hydride cracking	g(DHC)	DHC		7	ł
[1,2].	, rolled joint	(surface flaw)		
,			가	DHC	
				[2].	
]	DHC	1(a)			
(radia	l hydride)		,		
		, DHC		,	DHC
		ſ			
	,				
2.					
		, cold worked Zr-2	2.5wt%Nb		
(Cathodic h	ydrogen charging n	nethod)	6	0ppm 300ppm	
	. ,				,
KAERI	[3]	2		,	
	, 65±5		0.1 ~ 0.2 molar		
1	50 mA/cm^2	120	가 ,	50%	
			60ppm		300
23 , 3	300ppm	450	6		
H	Iot Vacuum Extract	ion			
				(OM),	
(TEM)			sand paper 2000		
, 6μm	diamond	45	45% H2O - 45% HNO3 - 10% HF		
swab-etching	. TEM	90% Ethano	90% Ethanol + 10% Perchloric Acid		

jet-polishing 20mA

.

1(b) (macroscopic hydride) Zr-2.5Nb cold worked Zr-2.5Nb () -Zr -Zr -Zr (axial section) -Zr (circumferential section) 2 가 60 ppm cold-worked Zr-2.5Nb 가 α/β -Zr 가 가 2 (a)-(c) -Zr 2(d) 2(a) Pervoric [4] cold worked Zr-2.5Nb -Zr -Zr -Zr . [000c] mismatch 가 (intergranular hydride), -Zr -Nb / Nb, / (transgranular hydride) 2(d) (transgranular hydride) -Zr 20%Nb , 400 가 -Zr 43%Nb 24 Zr-2.5Nb -Nb (3 78%Nb) -Zr 4 -Zr $\{10\overline{1}7\}$ (habit plane) $(111)_{d} //(0001)_{a}, \quad [1\overline{10}]_{d} //[11\overline{20}]_{a}$ (close-packed plane) Northwood [5] (circumferential hydride) (radial hydride)가 $\{10\overline{1}2\}, \{11\overline{2}1\}, \{1122\}, Zircaloy$ $\{10\overline{1}7\}$ $\{10\overline{1}0\},\$ [6]. 1(b) $\{10\overline{1}0\}$ -Zr TEM

Zr-2.5Nb $\{10\overline{1}7\}$

3.

4.

 7
 50 - 300 ppm
 cold worked Zr-2.5Nb
 OM, TEM

 .
 .
 .
 .
 .

1. Zr-2.5Nb -Hydride , $(111)_{d} //(0001)_{a}, \ [1\overline{1}0]_{d} //[11\overline{2}0]_{a}$ 가 . {10<u>1</u>7} -Zr 2. -Zr β-Zr α-Zr β-Zr . 가 α-Zr β-Nb , .

•

3.

[1] Young Suk Kim et al. KAERI Report ; KAERI/RR-1766/96, KAERI (1997) 365.

[2] P. A. Ross-Ros, J. T. Dunn, A. B. Mitchell, G. R. Towgood and T. A. Hunter, AECL-5261 (1976).

[3] , , , , , , , , , , , , , , , KAERI/TR-1329/99.

[4] V. Perovic and G.C.Weatherly, "The nucleation of hydride in a Zr-2.5Nb alloy", J. Nucl. Mater. 126 (1984) pp.160-169.

[5] D.O.Northwood and R.W.Gilbert, "Hydride in Zr-2.5Nb alloy pressure tubes", J. Nucl. Mater., 78 (1978) pp.112-116.

[6] C. E. Ells, "Hydride precipitates in zirconium alloy", J. Nucl. Mater. 28 (1968) pp.129-151.

[7] V. Perovic et al., "Hydride precipitation in / zirconium alloys", Acta metall. 31 (1983) pp.1381-1391.

Fig. 1. (a) A segment of a pressure tube, showing the orientation of the circumferential and radial hydride platelets relative to the principal directions in the pressure tubes . (b) axial and circumferential sections of cold worked Zr-2.5Nb pressure tube alloy containing 500 ppm H, showing alignment of hydrides in the circumferential-axial and plane of tube with the same morphology as the α -Zr grains.

Fig. 2. TEM micrographs of axial section of Zr-2.5Nb pressure tube containing 60 ppm H. (a) the hydride plate (arrowed) nucleated at the interface and grew across the -grain, (b) the decomposition of the retained -Zr phase into a series of discrete particles of the - or -Nb phase, (c) two variants of the hydride plate nucleated at the interface, and (d) the hydride plate grown in the -phase along the interface.

Fig. 3. TEM micrograph of annealed Zr-2.5Nb pressure tube containing 50 ppm H.

Fig. 4. Circumferential section of Zr-2.5Nb pressure tube containing 60 ppm H. (a) bright field TEM micrograph showing the hydride plate nucleated at the interface and grew across the -grain, (b) diffraction pattern from -hydride and -matrix showing $(111)_d //(0001)_a [1\overline{10}]_d //[11\overline{20}]_a$, (c) dark field TEM micrograph using a hydride reflection

Fig. 5. TEM micrographs of Zr-2.5Nb pressure tube containing 300 ppm H. (a) and (b) axial sections, (c) and (d) circumferential sections showing -hydride nucleated at the interface and grown across a number of -grain boundaries.

Fig. 6. TEM micrographs of Zr-2.5Nb pressure tube containing 300 ppm H. (a) and (b) axial section, (c) and (d) circumferential section. The diffraction pattern from -hydride and -matrix showing $(111)_{\delta}$ // $(0001)_{\alpha}$ and $[110]_{\delta}$ // $[1120]_{\alpha}$.

Fig. 7. Axial section of Zr-2.5Nb pressure tube containing 300 ppm H. In dark field using a hydride reflection, individual plates in the stack can seen.

Fig. 8. Possible stacking arrays of hydride plates in pressure tube alloys as views (a) in a axial section and (b) in a circumferential section. Note that all the arrays are shown in grains with normal to the habit plane lying at about 15° to the basal pole in each case.