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Abstract

Unpredictable failures can occur due to the DHC (delayed hydride cracking) or the degradation of
fracture toughness by hydride embrittiement in CANDU pressure tube which can result from the
absorption of hydrogen or deuterium in the high temperature coolant. To investigate the hydride
embrittlement of CANDU Zr-2.5Nb pressure tube, the transverse tensile test and the fracture toughness
test were performed from room temperature to 300°C using three different specimens which have an AR
(As Received), 100, and 200 ppm hydrogen. As the amount of absorbed hydrogen was increased, the
transverse yield strength and the ultimate tensile strength were also increased. In addition, as the test
temperature became higher they were decreased linearly. While, at room temperature, the hydrogen-
absorbed specimens represented the embrittlement which resulted in sudden decreasing of fracture

toughness, the fracture characteristics became ductile such as AR specimen at high temperatures.
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