- LBLOCA DVI MARS 가

Assessment of MARS 2.0 for Direct DVI Bypass during LBLOCA Reflood using KAERI Air-Water DVI Tests

, , ,

150

가 MARS 1/50 가 가 (DVI: Direct Vessel Injection) $20 \sim 35 \text{ m/sec}$ DVI 1.0 ~ 1.6 m/sec DVI , 1/50 가 DVI DVI 가 가 DVI **MARS**

Abstract

MARS code has been assessed for the direct ECC (Emergency Core Cooling) bypass that occurs during LBLOCA reflood of KNGR (Korean Next Generation Reactor) using the KAERI air-water DVI (Direct Vessel Injection) tests that are 1/50 scale-down tests simulating the LBLOCA reflood of KNGR. Assessment matrix is selected for the single and double DVI configurations with typical LBLOCA reflood conditions, that is, DVI injection velocity of 1.0 ~ 1.6 m/sec and air injection velocity of 20 ~ 35 m/sec. First, the MARS calculation is adjusted to match the DVI film distribution with the 1/50 scale test results, then the code assessments are carried out for the selected direct DVI bypass tests using the adjusted DVI film distribution. From the assessments, it has been found that the MARS is capable of predicting the direct DVI bypass phenomena as well as the multi-dimensional thermal hydraulics in the downcomer.

```
가
                3893 MWt
                             2x4
                                             (DVI)
                                                                         [1]. DVI
                 (HPSI: High Pressure Safety Injection)
                                                                     (SIT: Safety Injection
Tank)
                                                                  Train
       (
                       2.1m)
                                                                  , DVI
                          DVI
         가
                                      [2].
                         (Direct Bypass)
                                                             Sweep-out
                                                                                     DVI
                  가
                         가
         , DVI
                                                   UPTF[3]
                                                                                  . UPTF
DVI
           4
                       Babcock & Wilcox 가
                                                                                  DVI
                          2
            0.35 m
                                                  . UPTF DVI
                             DVI
1)
                                                                          , DVI
                                                                      가
2)
                                 DVI
                                               가
                                         0.75 ~ 1.2 m
                                                                                     DVI
                                  Sweep-out
                DVI
                           UPTF DVI
                                                          UPTF
                                                                  , UPTF
                                                           DVI
       DVI
  가
                                                DVI
                                                                                     DVI
                UPTF
                                                                DVI
                                                     DVI
                                                               가
                                                             (Steam Jet Impingement)
```

```
가 DVI
                                                   DVI
                                  DVI
                    Sweep-out
                                                 DVI
                 [2].
               DVI
                                  가
                                                   [4].
       (Reflood Head)
                                                   가
                         [2].
                  USNRC TRAC-PF1[6] 가
            MARS[5]
                      DVI
                                                    가가
                   가
                    1/24.3
                                      DVI
                                                    [7]
                                       - DVI
                       1/50
                                                    [8]
                            - DVI
                                                   MARS
                                              MARS
      가
                            DVI
        가 . 가
                                       , DVI
                                               1.0 ~ 1.6
                                                . , 1/50
          20 \sim 35 \text{ m/sec},
                           DVI
m/sec
                                       가
                                        가
                 DVI
                                 MARS
가
DVI
                    MARS
2. - DVI
2.1
                                                 DVI
                    DVI
                                        [8].
                     1
                                  , 1/50
                                                 1/7.1
     DVI
                                            , DVI
                        DVI
            DVI
                        Sweep-out
           DVI
                        가 가
        DVI ,
                                                 , DVI
```

DVI , DVI

DVI

DVI Sweep-out

Drain

DVI-2/4

[8] - DVI 1.

2.2 가 Matrix

가

Matrix

Matrix

DVI

1

가가 MARS - DVI DVI

가

DVI , 가 Matrix

, DVI-2 DVI-4

20 ~ 35 m/sec DVI 1.0 ~1.6 m/sec

KVxxVyyFzz XX DVI уу

(m/sec) zz DVI (lpm)

1. 가 Matrix

	DVI				HOTE				
ID	DVI-2	DVI-4	DVI	AIR-1	AIR-2	AIR -3			VOID HEIGHT
ID.									(m)
	(m/s)	(m/s)	(K)	(m/s)	(m/s)	(m/s)	(bar)	(K)	(111)
KV2V30F44	1.06	0.	281.41	15.44	15.39	15.35	1.2132	302.53	0.8172
KV2V31F44	1.05	0.	281.38	16.37	16.19	16.23	1.2758	303.6	0.8177
KV2V33F44	1.03	0.	281.31	17.37	17.38	17.16	1.3673	306.61	0.8183
KV2V35F44	1.0	0.	281.42	18.08	18.25	17.65	1.5161	321.57	0.8177
KV2V22F70	1.62	0.	284.91	11.44	11.32	11.40	1.1297	299.42	0.8590
KV2V24F70	1.61	0.	284.89	12.43	12.49	12.39	1.1719	298.30	0.8598
KV2V26F70	1.61	0.	286.10	13.20	13.01	13.22	1.2312	302.58	0.8594
KV2V27F70	1.63	0.	285.99	14.14	14.01	14.17	1.2683	303.24	0.8588
KV2V29F70	1.62	0.	284.87	15.16	14.89	15.08	1.3022	306.72	0.8587
KV2V32F70	1.61	0.	284.96	16.80	16.70	16.84	1.4944	316.05	0.8580
KV4V22F44	0.	1.02	280.94	11.23	11.23	11.18	1.1870	292.88	0.8172
KV4V26F44	0.	1.02	280.79	13.54	13.47	13.51	1.2902	300.28	0.8173
KV4V21F70	0.	1.60	285.79	11.08	11.12	10.96	1.2685	299.09	0.8565
KV4V26F70	0.	1.59	285.26	13.65	13.35	13.67	1.3812	306.85	0.8586
KV24V22F44	1.01	1.0	281.66	11.73	11.66	11.52	1.2176	295.76	0.8181
KV24V25F44	1.01	1.0	281.66	13.13	13.19	13.07	1.3021	301.96	0.8173
KV24V27F44	1.01	1.0	280.36	14.34	14.26	14.32	1.3944	305.03	0.8176
KV24V30F44	1.01	1.0	280.67	15.40	15.96	15.74	1.6327	325.75	0.8184
KV24V20F70	1.60	1.60	285.11	10.49	10.51	10.38	1.2197	299.12	0.8584
KV24V22F70	1.60	1.60	285.58	11.58	11.54	11.35	1.3170	304.21	0.8607
KV24V24F70	1.61	1.59	285.58	12.58	12.50	12.60	1.3833	311.90	0.8587
KV24V25F70	1.59	1.58	287.09	13.40	13.37	13.26	1.5225	323.11	0.8594

3. MARS 가

3.1 MARS

MARS(Multi-dimensional and Multi-purpose Analysis of Reactor Safety)									
						, USNRC	RELAP5[9] COBRA-	
TF[10]	1	3				,			
				,	Re	estructuring			
				MARS	2.0	3			
MASTER[11]		- CONTEMPT4[12]							
			,			, 3			
								,	
	,					,	GU	I(Graphic User	
Interface)				MARS			,	,	
		가		•		14			
MA	RS					가/	,	가	
		가							

DVI 가 **3.2 MARS** 가 가 가 가 MARS 3D Interfacial Term . 3D 3D Interfacial Term $\mathbf{r}_{n} = \mathbf{r}_{v} \frac{M_{n}}{M_{n} + M_{s}}, \quad \mathbf{r}_{s} = \mathbf{r}_{v} \frac{M_{s}}{M_{n} + M_{s}}$ where, **r**_v: Vapor Phase Total Density \mathbf{r}_n : Noncondenable gas Density \mathbf{r}_{s} : Steam Density M: MassMARS 3D Wall Friction UPTF 가 21A 3D Wall Friction 1D [13]. 1D Friction Factor Laminar, Transition Turbulent Friction Factor **3.3 MARS** 가 DVI MARS 3 2 DVI 1 1 2 . DVI Nodalization 18 20 DVI MARS

(Void Height)

Drain

, MARS

3

2. KAERI - MARS Nodalization

4. MARS 가

4.1 **DVI**

, DVI 1/50 . DVI DVI 가 , DVI-2/4 , MARS DVI 가 가 , MARS DVI 1/50 가 가 MARS DVI 가 , MARS 가 MARS 가 . DVI DVI 가 가 MARS DVI DVI 가 DVI DVI 가 DVI

MARS

가

, MARS ,

3

Node

VOID FRACTION (Display Range: 0.8 ~ 1.0)

20
18
16
14
2
2 4 6 8 10 12 14 16 18
Radial Channel

b) DVI Velocity = 1.6 m/sec

a) DVI Velocity = 1.0 m/sec

3. DVI

4.2 **DVI**

DVI 가 , DVI-2 DVI-4 DVI DVI 가 . 가 Matrix 2.2 , DVI 가 4 .

MARS 가

4. DVI-2 DVI-4

MARS 가

DVI 70 lpm MARS DVI 14.7 ~ 40.2 % 70 lpm DVI MARS 4.1 , MARS 32 m/sec 44 lpm 가 가 가 MARS DVI-4 , DVI 70 lpm -2.7 ~ 17.6 % DVI DVI MARS 5 (ECC Penetration) 가 , 44 lpm DVI DVI

가 .

5. (KV4V21F70)

4.2 **DVI**

가

DVI 가 , DVI-2/4 DVI DVI 가 . 가 Matrix 2.2 , MARS 가 6 .

6. DVI-2/4 MARS 가 フト , MARS -10.6 ~ 18.6 % DVI DVI . 44 lpm DVI DVI 가 DVI-4 DVI-2 , MARS 가 . 70 lpm DVI DVI 가 DVI DVI-2

,

.

DVI-2

- (Steam Jet Impingement)
. , DVI-2

. DVI-2

(ECC Penetration) ,

. DVI-2 -2 -3

. DVI-4 , DVI-2

가

.

							DVI			MARS
		가	,					1/50		- DVI
		가			MARS	가			DVI	
	DVI		,							
				DVI						
가		, MARS						,		
-	- (Steam Jet Impingement)								DVI	
								,	가	
-						MARS				DVI

, UPTF DVI 가 - DVI

- 1. Standard Safety Analysis Report for Korean Next Generation Reactor, KEPCO, 1999
- Lee, W.J. et al., "Major T/H Phenomena of DVI during LBLOCA Reflood", THEXAS-00-1, Pohang University, 2000
- "Summary of Results from the UPTF Downcomer Injection/Vent Valve Separate Effects Tests, Comparison to Previous Scaled Tests, and Application to Babcock & Wilcox Pressurized Water Reactors", MPR-1329, MPR Associates, Inc., 1992
- Bae, K.H. et. al., "Evaluation of the KNGR Direct Vessel Safety Injection System for the Large Break LOCA using MARS 1.4", 4th JSME-KSME Thermal Engineering Conference, Kobe, Japan, Oct, 2000
- Lee, W.J. et al., "Development of MARS for Multi-Dimensional and Multi-Purpose Thermal-Hydraulic System Analysis", NTHAS-2: Second Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety, Fukuoka, Japan, October, 2000
- 6. Spore, J.W., et al., "TRAC-PF1/MOD2", LA-12031-M, NUREG/CR-5673, LANL, 1998
- Yun, B.J. et al., "Basic Design of the KNGR DVI Test Facility (a): Fluid System", 53121-DVI-GEN-RT002(a), Rev. 01, DS-3, KAERI, 2000
- Yun, B.J. et al., "Experimental Observation on the Hydraulic Phenomena in the KNGR Downcomer during LBLOCA Reflood Phase", 2000 Spring KNS Conference, 2000
- 9. The Thermal Hydraulics Group, "RELAP5/MOD3 Code Manual", NUREG/CR-5535, 1998
- M.J. Thurgood, et. al., "COBRA/TRAC A Thermal-Hydraulics Code for Transient Analysis of Nuclear REactor Vessels and Primary Coolant Systems", NUREG/CR-3046, PNL-4385, 1983
- Cho, B.O. et. al., "MASTER-2.0: Multi-purpose Analyzer for Static and Transient Effects of Reactors,"
 KAERI/TR-1211/99, Korea Atomic Energy Research Institute, Jan. 1999
- 12. Hwang, Y.D., *et al.*, "Development of the Containment Transient Analysis Code for the Passive Reactor", KAERI, KAERI/TR-1058/98, 1998
- 13. Ha, K.S., *et al.*, "Assessment of MARS for DVI Bypass during LBLOCA End-of-Blowdown using UPTF Test 21 Phase A", 2000 KNS Fall Conference, to be published