LBLOCA I MARS 가

Assessment of MARS 2.0 for Direct DVI Bypass during LBLOCA Reflood using KAERI Air-Water DVI Tests

, ,

150

Abstract

MARS code has been assessed for the direct ECC (Emergency Core Cooling) bypass that occurs during LBLOCA reflood of KNGR (Korean Next Generation Reactor) using the KAERI air-water DVI (Direct Vessel Injection) tests that are 1/50 scale-down tests simulating the LBLOCA reflood of KNGR. Assessment matrix is selected for the single and double DVI configurations with typical LBLOCA reflood conditions, that is, DVI injection velocity of 1.0 ~ 1.6 m/sec and air injection velocity of 20 ~ 35 m/sec. First, the MARS calculation is adjusted to match the DVI film distribution with the 1/50 scale test results, then the code assessments are carried out for the selected direct DVI bypass tests using the adjusted DVI film distribution. From the assessments, it has been found that the MARS is capable of predicting the direct DVI bypass phenomena as well as the multi-dimensional thermal hydraulics in the downcomer.

DVI

1.

		3893 MV	Wt	2x4		가	,			
						(DVI)		[1]. DVI	
		(HPSI:	High	Pressure Sa	afety I	njection)		(SIT:	Safety	Injection
Tank)						4		Train		
	(2.1m)			,				
							•	, DVI		
		•								
	,		D١	Л						
							,			
	가			[2	2].					
	,		(D)	mat Demos	.)		, C	4		DVI
		71	(D1 7ŀ	rect Bypass	5)		Swee	ep-out		DVI
		~1	~1							
	, DVI				-1	UPTI	F[3]			. UPTF
DVI	4		Babco	ck & Wilco	x 가	LIDT		,		DVI
	0.35	m	2			. UPI	F DVI			
1)			•	DVI					. DVI	
-)									,	
								가		
2)				DVI					,	
						가	,			
					0.7	5 ~ 1.2 m				DVI
				Swee	ep-out					
		DVI	τ	PTF DVI			UPTF			
								, UPTF		
	DVI						DVI			
가		•	,			DVI				DVI
		UPTF				,		DVI		
	-					~	л –	1		
			·	,		D١	/1	't		
			,				(Ste	am Jet Im	pingeme	ent)

가 DVI DVI , , DVI Sweep-out DVI • [2]. DVI 가 [4]. (Reflood Head) , 가 , [2].

MARS[5] USNRC TRAC-PF1[6] 가 , DVI 7}가 가 . ,

. 1/24.3 - DVI [7] , 1/50 - DVI [8]

- DVI MARS MARS 가 DVI 가 . 가 , DVI 1.0 ~ 1.6 . , 1/50 20 ~ 35 m/sec, DVI m/sec 가 , 가 DVI MARS . 가

DVI MARS .

2. - DVI

2.1

DVI DVI [8]. 1 , 1/50 1/7.1-DVI . , DVI DVI DVI , Sweep-out DVI . , 가 가 DVI , , DVI , ,

Sweep-out

DVI DVI

Drain

1. - DVI [8]

2.2 가 Matrix

				DVI		
MARS	가가		, - D	IVI		
			DVI		;	가
Matrix						
	, フ	ŀ	Matrix		DVI	
	가 Matrix 1		, DVI-2	DVI-4	Ι	DVI-2/4
	20 ~ 35 m/sec DVI		1.0 ~1.6 m/se	ec		,
	KVxxVyyFzz ,		xx DVI	уу		
	(m/sec) zz DVI (lpm)					

1. 가	Matrix
------	--------

	DVI								LIOD
ID	DVI-2	DVI-4	DVI	AIR-1	AIR-2	AIR -3			VOID
ID									(m)
	(m/s)	(m/s)	(K)	(m/s)	(m/s)	(m/s)	(bar)	(K)	(III)
KV2V30F44	1.06	0.	281.41	15.44	15.39	15.35	1.2132	302.53	0.8172
KV2V31F44	1.05	0.	281.38	16.37	16.19	16.23	1.2758	303.6	0.8177
KV2V33F44	1.03	0.	281.31	17.37	17.38	17.16	1.3673	306.61	0.8183
KV2V35F44	1.0	0.	281.42	18.08	18.25	17.65	1.5161	321.57	0.8177
KV2V22F70	1.62	0.	284.91	11.44	11.32	11.40	1.1297	299.42	0.8590
KV2V24F70	1.61	0.	284.89	12.43	12.49	12.39	1.1719	298.30	0.8598
KV2V26F70	1.61	0.	286.10	13.20	13.01	13.22	1.2312	302.58	0.8594
KV2V27F70	1.63	0.	285.99	14.14	14.01	14.17	1.2683	303.24	0.8588
KV2V29F70	1.62	0.	284.87	15.16	14.89	15.08	1.3022	306.72	0.8587
KV2V32F70	1.61	0.	284.96	16.80	16.70	16.84	1.4944	316.05	0.8580
KV4V22F44	0.	1.02	280.94	11.23	11.23	11.18	1.1870	292.88	0.8172
KV4V26F44	0.	1.02	280.79	13.54	13.47	13.51	1.2902	300.28	0.8173
KV4V21F70	0.	1.60	285.79	11.08	11.12	10.96	1.2685	299.09	0.8565
KV4V26F70	0.	1.59	285.26	13.65	13.35	13.67	1.3812	306.85	0.8586
KV24V22F44	1.01	1.0	281.66	11.73	11.66	11.52	1.2176	295.76	0.8181
KV24V25F44	1.01	1.0	281.66	13.13	13.19	13.07	1.3021	301.96	0.8173
KV24V27F44	1.01	1.0	280.36	14.34	14.26	14.32	1.3944	305.03	0.8176
KV24V30F44	1.01	1.0	280.67	15.40	15.96	15.74	1.6327	325.75	0.8184
KV24V20F70	1.60	1.60	285.11	10.49	10.51	10.38	1.2197	299.12	0.8584
KV24V22F70	1.60	1.60	285.58	11.58	11.54	11.35	1.3170	304.21	0.8607
KV24V24F70	1.61	1.59	285.58	12.58	12.50	12.60	1.3833	311.90	0.8587
KV24V25F70	1.59	1.58	287.09	13.40	13.37	13.26	1.5225	323.11	0.8594

3. MARS 가

3.1 MARS

MARS(Multi-dimensional and Multi-purpose Analysis of Reactor Safety)

				, USNRC	RELAP5[9]	COBRA-
TF[10]	1	3		,		
			,	Restructuring		
			MARS	2.0 3		
MASTER[11]			-	CONT	EMPT4[12]	
		,		, 3		
				•		,
	,			,	GUI(Graphic User
Interface)			MARS		,	
		가		14		
MA	ARS			フト	,	가
		가				

, MARS 3 , . , 가 . , DVI

3.2 MARS

가	-	가	•	, 가	
MARS 3D	Interfacial Term			가	. 3D

	•	,	3D	Interfacial Term
14	14		,	
$\mathbf{r}_n = \mathbf{r}_v \frac{M_n}{M_n + M_s}, \mathbf{r}_s = \mathbf{r}_v \frac{M_s}{M_s}$	$\frac{M_s}{M_n + M_s}$			

where,	\mathbf{r}_{v} : Vapor Phase Total Density
	\mathbf{r}_n : Nonconden a ble gas Density
	\mathbf{r}_{s} : SteamDensity
	M : Mass

MARS 3D	Wall Friction			,	
				. UPTI	7
21A 가		,	3D	Wall Friction	
1D	[13]. 1D	Friction Factor	Laminar, Transition	
Turbulent			,	Friction	1
Factor					

3.3 MARS

.

DVI		가		MARS	3
	2	,	, DVI		1
	1		2	Nodalization	. DVI
			,	18	
20		. ,			
		DVI	MARS	-	
	,			. ,	
			,		
		,	(Void Height)	Drain	

2. KAERI - MARS Nodalization

4. MARS 가

4.1 DVI

, DVI 1/50 . DVI DVI , 가 , DVI-2/4 , MARS . DVI 가 가 , MARS DVI 1/50 가 가 MARS DVI 가 , MARS 가 MARS 가 . DVI DVI 가 가 MARS DVI DVI 가 DVI DVI 가 DVI 가 3 MARS . , MARS ,

Node

•

4. DVI-2 DVI-4 MARS 가

가 .

4.2 **DVI**

DVI	가				, DVI-2/4	DVI
	DVI	가	가	Matrix	2.2	
, MARS	가	6				

가

- 1. Standard Safety Analysis Report for Korean Next Generation Reactor, KEPCO, 1999
- Lee, W.J. *et al.*, "Major T/H Phenomena of DVI during LBLOCA Reflood", THEXAS-00-1, Pohang University, 2000
- "Summary of Results from the UPTF Downcomer Injection/Vent Valve Separate Effects Tests, Comparison to Previous Scaled Tests, and Application to Babcock & Wilcox Pressurized Water Reactors", MPR-1329, MPR Associates, Inc., 1992
- Bae, K.H. *et. al.*, "Evaluation of the KNGR Direct Vessel Safety Injection System for the Large Break LOCA using MARS 1.4", 4th JSME-KSME Thermal Engineering Conference, Kobe, Japan, Oct, 2000
- Lee, W.J. *et al.*, "Development of MARS for Multi-Dimensional and Multi-Purpose Thermal-Hydraulic System Analysis", NTHAS-2: Second Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety, Fukuoka, Japan, October, 2000
- 6. Spore, J.W., et al., "TRAC-PF1/MOD2", LA-12031-M, NUREG/CR-5673, LANL, 1998
- Yun, B.J. *et al.*, "Basic Design of the KNGR DVI Test Facility (a) : Fluid System", 53121-DVI-GEN-RT002(a), Rev. 01, DS-3, KAERI, 2000
- Yun, B.J. *et al.*, "Experimental Observation on the Hydraulic Phenomena in the KNGR Downcomer during LBLOCA Reflood Phase", 2000 Spring KNS Conference, 2000
- 9. The Thermal Hydraulics Group, "RELAP5/MOD3 Code Manual", NUREG/CR-5535, 1998
- M.J. Thurgood, et. al., "COBRA/TRAC A Thermal-Hydraulics Code for Transient Analysis of Nuclear REactor Vessels and Primary Coolant Systems", NUREG/CR-3046, PNL-4385, 1983
- Cho, B.O. *et. al.*, "MASTER-2.0: Multi-purpose Analyzer for Static and Transient Effects of Reactors," KAERI/TR-1211/99, Korea Atomic Energy Research Institute, Jan. 1999
- Hwang, Y.D., *et al.*, "Development of the Containment Transient Analysis Code for the Passive Reactor", KAERI, KAERI/TR-1058/98, 1998
- 13. Ha, K.S., *et al.*, "Assessment of MARS for DVI Bypass during LBLOCA End-of-Blowdown using UPTF Test 21 Phase A", 2000 KNS Fall Conference, to be published