UPTF Test 21A DVI LBLOCA EOB MARS ECC 기

Assessment of MARS for ECC Bypass during LBLOCA End-of-Blowdown Using UPTF Test 21 Phase A

,	,	,
		150

UPT	ſF	DVI	(Dire	ct Vessel	Injecti	on) Test	21	4	(Phas	se A,B	,C,D)		
		LBLO	CA	(Large	Break	Loss-o	of-C	oolant-A	Acciden	t) EC	ЭB	(End-o	f-Bypas	ss)
ECC(E	mer	gency	Core	Cooling	water)			Phase	А		MAF	RS 2.0		
				가		LBLOC	A E	EOB				기	ł	
				ECC			MA	RS				가		
Phase	A				가	,	MA	RS						
							Μ	IARS 3	D	'P	ooľ	'Inv	verted	Pool'
							,				1D)		
	MA	ARS				가		,						
			,			MARS			Ι	BLOC	EA E	OB		MARS

ECC

Abstract

The UPTF DVI (Direct Vessel Injection) Test 21 is divided into four phases of tests A, B, C and D. The Multidimensional analysis for UPTF DVI Test 21 Phase A that is ECC bypass test during LBLOCA EOB (End-of-Blowdown) has been carried out using MARS 2.0 thermo-hydraulic computer code. The purpose of the assessment is to investigate the MARS analysis capability for the ECC bypass in downcomer when accumulator injects during LBLOCA EOB. Preliminary assessment results showed that the MARS under-predicted the depressurization at early transient and the ECC bypass rate. Based on the code calculation results, the interfacial friction force model for "pool" and "inverted pool" flow regime of the MARS 3D module was improved. Also, the wall friction factor of the 3D module was improved in the form of 1D module model. Assessment results with the improved MARS nearly approximated with the experimental results. Conclusively, it has been shown that the improved MARS is capable of simulating the ECC bypass phenomena during LBLOCA EOB.

2000

,

				(DVI : Direct Vessel
Injection System	1)			가
				. DVI
		UPTF(Upper P	lenum Test Facility)	Test 21
, DV	T		LIPTE DVI	
	DVI	가	.0111 DV1	UPTE DVI
	211			2 m
				. UPTF
		2		
	4		. UPI	TF DVI
	DVI			
	UPTF	Full Scale	DVI	
			가 . UPTF :	Test 21 DVI
				4
(Phase	A, B, C, D)	. Phase A B		(LBLOCA ; Large Break
Loss-of-Coolan	t Accident) EOB(End	of Blowdown	(Accumulat	or)
	(Lower Plenum)	Refill	•	Phase A 117 °C
	, Phase B ,	,		Refill
	. Phase C	Upper Core Plate	Entrai	nment
, Phase D	LBLOCA (Re	flood)	Dow	ncomer
Entrainme	ent			
				MARS(Multi-dimensional
Analysis of Rea	ctor Safety) 2.0	UPTF DVI	LBLOCA	EOB
	Test 21 Phase A	가	. 2	UPTF Test 21 Phase
А	MARS			3 , 4
2. UPTF Test 2	1 Phase A			
UPTF DVI	1300 Mwe,	4-Loop Babcock &	と Wilcox 가	
•	Downcomer,	,	,	, 4
		,		
				,
I	Feedback			
		1 1	•	-1
UPIF 21A	LBLOCA EOB		DV/I	가
Downcomer	21	27		leo (a)
	51	37	(315	ку/s) ,

1.

	3 bar		6 bar		가	•	, 46	117 °C		
(subco	oled)			48		(182	20 kg/s)			
1 Phas	e A		. 4							,
		0.6 m .				225	kg/s,			
	30 kg/s	315 kg/s		D	owncomer					
		가 6 bar	가	2	DVI			910	kg/s	

Downcomer [7].

(MPa)	(°C)	(kg/s)	(m)
0.295	191	225 (30s~)	0.6
0.295	178	30/SG (30s~)	-
0.295	136	-	-
1.900	32	910 (46s~)	11.8

3. MARS - 가

3.1 MARS

MARS	[1,2]						,
USNRC	RELAP5[3]	COBRA-TF[4]	1	3			,
,	Restruct	turing					
MARS 2.0	3		MASTER		-		
CONTEM	PT4			,		, 3	
						[5, 6].	

,

	GUI(Graphic	, User Interface)	,		MARS
	,			가	
14			MARS		
가/	,	가		가	
	, MARS	3			,
			,		
		• • •			DVI
		가 .			

3.2 MARS UPTF

MARS	Phase A	ase A			Nodalization	1	•
			,	,			,
					가	. Barrel	

, 1 . 4 SECTION . SECTION I Nodalization 2 CHANNEL . , 1 CHANNEL, 2 NODE . SECTION II , Barrel Downcomer Lower Core Plate 10 CHANNEL 4 DVI 2 . Downcomer . SECTION III IV , SECTION IV NODE DVI . Nadalization MARS 2.0 , 가 가 . MARS 2.0

1. UPTF Test 21 MARS Nodalization

4. MAF	RS	가							
	MARS	2.0		(4	~7)	2 가			
	(1)								(2)
		Penetr	ration			(50	9%)		,
	가 D	owncomer A	nnulus			DVI C	CHANNEL		
D	VI Penetra	tion	,			D	VI	50 %	
Broken	Cold Leg								
2	가								
'Pool'	'Inv	verted Pool'	Ir	nterfacia	l Friction M	odel			
			DVI Water가		Channel		Channel		
		. 2		Cell		가	MARS	3D	
	'Pool'	'Inverted	Pool'	, Int	erfacial Fricti	ion Force			

, MARS Interfacial Friction Force Bubbly Flow Regime 2 Coefficient DVI Water Injection Channel , 가 Bubbly Flow Channel Film Flow Bubbly Flow . Friction Force MARS , [8]. MARS Bubbly Flow Film Flow , Liquid Vapor Regime (1), (2) Interfacial Friction Coefficient(K_{Ivl})

- Bubbly Flow

$$K_{IBvl} = 0.375 \times \frac{C_D}{r_b} a_v r_l U_r$$

where, $C_D = \frac{24}{Re_b} (1.0 + 0.1 \times Re_b^{0.75})$
 $r_b = \min(0.5 \frac{We_b s}{r_l U_r^2}, 0.5D_H, 0.02), \text{ if } a < 0.2$ (1)

- Film Flow

$$K_{IFvI} = 2.0 \times \frac{f_I}{D_H} \sqrt{\boldsymbol{a}_v} \boldsymbol{r}_v U_r$$
(2)
where, $f_I = 0.005 \times (1.0 + 75 \times \boldsymbol{a}_I)$

MARS Small Bubble Flow Interfacial Term Stable Film Flow Large Bubble Flow Unstable Film Flow Flow Regime Term Factor 0.4 Small Bubble Flow Large Bubble Flow . 2 Flow Pattern Bubbly Flow Film Flow가 . Flow Regime . Interfacial Friction Coefficient . (1) Momentum Cell Cell . (2) Interfacial Friction Force (1) (2) (3) .

$$\begin{aligned} & \mathcal{K}_{ret} = (1 - \mathbf{a}_{men})(1 - \frac{0.25a_{m}}{a_{e}})\mathcal{K}_{(ret)} + \mathbf{a}_{men} \frac{0.25a_{e}}{a_{e}}\mathcal{K}_{(ret)} & (3) \\ & \text{where, } \mathbf{a}_{men} = 0.5 \times \max(\mathbf{a}_{e}, \mathbf{a}_{e_{e}}, \mathbf{a}_{e_{e}}) \\ & \text{MARS 3D} & \text{Wall Friction } \mathbf{10/3D} & \mathbf{3D} \\ & \text{Wall Friction } \mathbf{10/3D} & \mathbf{3D} \\ & \text{Wall Friction } \mathbf{10/3D} & \mathbf{3D} \\ & \text{Wall Friction Factor} & \mathbf{10/3D} & \mathbf{3D} \\ & \text{Wall Friction Factor} & \mathbf{10/3D} & \mathbf{3D} \\ & \text{Wall Friction Factor} & (4) \\ & \mathbf{f}_{e} = \max(\frac{64.0}{Re_{e}}, \frac{1.691}{Re_{e}^{1.004}}, \frac{0.117}{Re_{e}^{1.004}}) & (4) \\ & \mathbf{3} & (4) & 7^{\frac{1}{2}} \quad \text{Reynolds Number 600} \quad \text{Laminar Flow Region, 600} \\ & 10000 \quad \text{Laminal-Transition, 10000} & \text{Tubulent Region} \\ & \text{Friction Factor} & \text{Downcomer} \\ & \text{Hydraulic Diameter?} \\ & \text{MARS 1D} & \text{Wall Friction Factor} & 7^{\frac{1}{2}} & \text{Laminar Flow Reynolds} \\ & \text{Number 2200} , \text{Transition} & 2200 & 3000 & 3000 & \text{Tubulent flow } 7^{\frac{1}{2}} \\ & \text{Friction Factor} \\ & \text{Friction Factor} \\ & \text{Impact and } \\ & \int_{1}^{1} \left[\frac{64.0}{Re_{e}}, \quad for laminar region, \\ & f_{e} \left[\frac{64.0}{Re_{e}}, \quad for laminar region, \\ & f_{e} \left[\frac{64.0}{Re_{e}}, \quad for laminar region, \\ & f_{e} \left[\frac{1.14 - 2\log(\frac{e}{D} + \frac{21.25}{Re_{e}^{1.97}}) \right]^{\frac{1}{2}}, \quad for transition region \\ & (5) \quad \text{Transition, Tubulent} \\ & \text{Fiction Factor} \\ & \text{MARS 3D} \\ & \text{Fiction Factor} \\ & \text{Mark 3D} \\ & \text{Mark 3D} \\ & \text{Momentum Equation 1D} \\ & \text{Energy} \\ & \text{Mass Equation} \\ & \text{ID} \quad 3D \\ \\ & \text{Mark 3D} \\ & \text{ID} \quad 3D \\ \\ & \text{Mark 3D} \\ & \text{ID} \quad 3D \\ \\ & \text{Channel} \\ & \text{Horizontal Junction} \\ & \text{JD} \\ & \text{JD} \\ \\ & \text{JD} \\ & \text{JD} \\ \\ \\ & \text{JD} \\ \\ & \text{JD} \\ \\ & \text{JD} \\ \\ & \text{JD} \\ \\ \\ & \text{JD} \\ \\ & \text{JD} \\ \\ & \text{JD} \\ \\ \\ \\ \\ & \text$$

Modified

3. MARS 3D

Friction Factor

MARS 3D	Interfacial Term			Vapor Phase Density	7	'ŀ	•
3D	Vapor Phase	Stea	am		Ι	Density	Mass
Fraction	(6)	Den	sity		Vapor Phase	Density	7
	. N	IARS	3D	Interfacial Term		Steam P	hase
Density Fraction				· ,			

$\mathbf{r}_n = \mathbf{r}_v \frac{M_n}{M_n + M_s}, \mathbf{r}_s = \mathbf{r}_v \frac{M_n}{M_n}$	$\frac{M_s}{+M_s}$		
where, \mathbf{r}_{v} :Vapor Phase To	tal Density		
\boldsymbol{r}_n : Noncondensable	e gas Density		(6)
r_s : Steam Density			
M : Mass			
		~ - ~	

MARS		. (1) MARS 3D	Gap Loss	Coefficient	Horizontal
Momentum Cell					
Section(Elevation	Channel)			Gap
Loss Coefficient Ho	rizontal Momentum	Cell		. (2)	Wall
Friction Wall	(Roughne	ess)	. Default	0.0001 m가	
, Ch	annel				
(1) Gap Loss Coeffic	cient Cell		6050ccxx	Channel	Variation
Table Tab	ble , 6060t	t00	Word (-)	сс	
6060ttdd	Gap				
(2) Wall Friction Fact	or		6020cc00 Chann	el Data	

Word . Default .

.

4.						
UPTF	DVI	MARS 2.	0			
LBLOCA	EOB	가				
Refill		. 4	(Phase	A, B, C, D)	, Phase A	MARS 2.0
가						
Phase A	MARS 2.0) 2	가			
()		가		MARS 3D	Interfacial Friction
Force	Wall Friction 1	Factor			MARS	
	,				· ,	MARS
	LBLOCA EOB	MA	RS	DVI		
	, UPTF DVI	B, C	D	가	, DVI	MARS
		가가				

K_{IvI} : Interfacial friction coefficient	C_D : Interfacial Drag Coefficient			
: Void fraction	r_b : Bubble radius			
: Phase density	U_r : Relative Velocity			
Re : Reynolds number	<i>We</i> : Weber number			
: Surface tension	D_H : Hydraulic diameter			
f: Friction factor	: Wall roughness			

5.

[1]	,	,	,	,			
	", KAERI	/TR-110	8/98 (199	8)			

[2] J.-J. Jeong, K.S. Ha, B.D. Chung and W.J. Lee, "Development of a multi-dimensional thermal-hydraulic system code, MARS 1.3.1", ANE, Vol. 26 No. 18 (1999)

MARS 1.3

- [3] U.S. NRC, "RELAP5 Code Manual Volume", NUREG/CR-5535 (1998)
- [4] M.J. Thurgood, et.al., "COBRA/TRAC Manual", NUREG/CR-3046 (1983)
- [5] Jae-Jun Jeong, et. al., "MARS/MASTER Solution to OECD Main Steam Line Break Benchmark Exercise III", J. of KNS, Vol. 32, No. 3, (2000)
- [6] , , , "MARS 1.3 System Analysis Code Coupling with CONTEMPT4/MOD5/PCCS
 Containment Analysis Code using DLL", Proc. KNS '98 Autumn Meeting (1998)
- [7] UPTF Team, "Experimental Data Report, Test No. 21, Downcomer Injection Test", SIMENS AG, KWU (1990)
- [8] J.J. Jeong, I. Dor, and D. Bestion, "Improvement and Assessment of the CATHARE 2 Three-dimensional Module Compared with the UPTF Downcomer Test 7", Nuclear Technology, Vol. 117 (1996)