Irradiation Embrittlement Mitigation by Thermal Annealing of Reactor Pressure Vessel

Abstract

In terms of plant safety, the reactor pressure vessel is one of the most critical pressure boundary components in a nuclear power plant. Therefore, the effects of irradiation damage should be considered in determining the overall lifetime of the reactor pressure vessel. Thermal annealing of a reactor pressure vessel is considered to be the best option for assuring vessel integrity when nil-ductility temperature and upper shelf energy do not satisfy regulatory limits. In this paper, a simulation study was performed to evaluate the feasibility of thermal annealing by using thermal and stress analysis for operating nuclear power plant reactor pressure vessel. In addition, a thermal annealing evaluation program that can be used for predicting the recovery percent of material properties and the reembrittlement trend is introduced. 가

 パNil-Ductility Transition Temperature)가 가
 .

 10CFR50.61
 가
 가

 (Screening Criteria)
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

,

.

가 가 1 가 가 . , 가 .

가 가 . .

2.

7) [2]

· 가 가 가 . 가

[4].

1.

가	850 (453) [5,6].	168 가	가 ,	40% フト
	가			, 7ŀ
,				~1
ASME Code Case N-55	7 가	가		
,		·		
2.1.1 가				
SA-508	가		, SA-533	
가				
	가			
가 1m 가			가 (3m)
	2			, 850 (453)
, 168hr, 가	, 25 /hr, 가	1m 가		, 656 (155),
2.1.2				
		(1)		
	$h = (Q/A_{support})$	$/(T_{vessel} - T_{air})$		(1)
		1		
가 8 220 가			470	,

2.1.3

ABAQUS

2, 3 , 4 가 (Heat Up) , 2, 3 , 2.2 2.2.1 가 RT_{NDT} USE 가 가 , 가 가 가가 가 가 가 (Supplemental Surveillance Program) , 가 RT_{NDT} R.G. 1.162 [7]. (2) (3) $R_{USE} = \{ [1 - 0.586 \exp(-\frac{t_a}{15.9})] \times [0.570 \Delta USE_i] \}$ (2) + $(0.120T_a - 104)Cu + 0.0389T_a - 17.6]$ \times {100/ ΔUSE_i } , R_{USE} USE (%) , USE_i USE . t_a , Cu T_{a} , (3) . $R_t = [0.5 - 0.5 \tanh\{(a_1T_a - a_2)/95.7\}]$ (3) a_2 , R_t (%) , a₁ •

$$a_{1} = 1 + 0.015 \ln(t_{a}) - 0.424Cu^{(3.28-0.00306T_{a})}$$

$$a_{2} = 0.584(T_{i} + 637) \qquad (T_{a} > 800)$$

$$0.584T_{i} - 15.5 \ln(\Phi) + 833 \qquad (T_{a} < 750)$$

$$RT_{NDT(A)} = RT_{NDT(U)} + \Delta RT_{NDT} \times (100 - R_{t})/100$$
(4)
$$C_{V} USE_{(A)} = C_{V} USE(U) \cdot [1 - D \times (100 - R_{USE})/10000]$$
(5)

, Cv	USE _(U)	$RT_{\text{NDT}(U)}$		(Unirradiated)	
, D	RT _{ND}	ſ	USE	RT _{NDT} 가	

2.2.3

			RT _{NE}	DT						가
				3	0		24EFPY			,
		0.29%		. 1				가		
85()		168hr			USE	RT _{NDT}			114.2%,
80.	1%				100%					, R _{USE}
	R _t 가	100%	80.1%							66ft-
lb	50.5	가								
	5,	6					USE	RT _{NDT}		
				, 750	800					
	(\mathbf{R}_{t})						5,	6		, 850
					가			,	가	
		,								

2.3

2.3.1

1			
	SA-508 Class 1		
	Linde 80		
	4.114 × 10 ¹⁹ n/cm2	7	
	850	RT _{NDT} : 80.2%	RT _{NDT} : 50.5
	168	USE : 100%	USE : 66ft-lb
	-10		
	550		
	0.29%]	
	78ft-lb	7	
	35ft-lb]	

• 가 Windows • ASTM E185 (Lateral Shift Model) . RT_{NDT} USE 가 . (6)

(Transition Recovery Fluence), f_t ·

,

$$RT_{NDT(A)} - RT_{NDT(U)} = [CF] f_t^{0.28 \cdot 0.1 \log f_t}$$
(6)

, $RT_{NDT(A)}$	RT _{NDT(U)}	RT _{NDT}	RT _{NDT}	CF

가 RT_{NDT} (7) . ,

$$\Delta RT_{NDT} = [CF] (f + f_t)^{0.28 - 0.1 \log(f + f_t)}$$
(7)

(8) 7 · .

$$C_v USE = C_v USE_{(U)} \times [1 - D_{100}]$$
 (8)
 $D = (100Cu + 9) \cdot f^{0.2368}$
 $D = (100Cu + 14) \cdot f^{0.2368}$

, $CvUSE_{(U)}$ D () . f f_s

(Shelf Recovery Fluence), f_s (9) (10)

$$f_{s} = \left[\frac{1 - (C_{v} USE_{(A)} / C_{v} USE_{(U)})}{100Cu + 9}\right]^{4.223}$$
(9)
$$f_{s} = \left[\frac{1 - (C_{v} USE_{(A)} / C_{v} USE_{(U)})}{100Cu + 14}\right]^{4.223}$$
(10)

가

.

9,

 アト
 ,
 ,
 アト

 ・
 7
 ,
 ,

 アト
 8
 ,
 ,

 ,
 ,
 ,
 .

.

2.3.2 7¹ 850 , 168 7¹ , 82% 100% 9, 10 10 ,

가 가 가 3.

 ・
 ・

 ・
 ・

 ・
 ・

O , (P) HAZ

REFERENCE

- 1 Von estorff, "Irradiation Embrittlement Mitigation" AMES Report No. 1, 1994.
- 2. D. J. Ayres, "Vessel Prestress : A New Solution for Pressurized Thermal Shock", ABB-CE 1993.
- 3. M. G. Vassilaros, "Annealing of Nuclear Pressure Vessel", Nuclear Engineering and Design 181 1998
- 4. John. Warren, "DOE's Annealing Prototype Demonstration Projects", NUREG/CP-0157, Vol2
- 5. S. T. Rosinski, "Reactor Pressure Vessel Demonstration Conference", EPRI, 1998
- NRC, Reg. Guide 1.162 "Format and Content of Report for Thermal Annealing of Reactor Pressure Vessels", 1996
- 7. E. D. Eason, "Embrittlement recovery due to annealing of reactor pressure vessel steels", Nuclear Engineering and Design. 1998

(a) Heat Up (33)

(b) Cooling (233)

2

RT_{NDT} USE

5

RT_{NDT} USE

7

10 USE