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Abstract

  The Walsh functions are used to obtain the space dependent thermal conductivity in one dimensional

time dependent heat conduction medium. Although it is necessary to measure the temperatures in interior

points, the Walsh reveals the real values without any numerical constraints. The proposed algorithm is

quite different from other algorithms in that it is one-directional, that is, no iteration is necessary, and is

numerically stable regardless of the functional characteristics of the thermal conductivity. This permits

the estimation of yjermal conductivity when the medium consists of different materials.

1. Introduction

   The inverse heat conduction problem (IHCP) is to estimate the spatially varying thermal conductivity

of an inhomogeneous medium and is one of important issues in the engineering applications. And the

algorithms in obtaining the solutions of IHCP are directly related to the similar problems encountered in

various fields.

   The IHCP is classified into two categories. One is the determination of thermal properties such as

thermal conductivity and heat capacity, and the other is the estimation of boundary and initial conditions

or heat sources. Each is based on the knowledge of temperatures or heat fluxes obtained through

measurements. Regarding the former, some researchers have focused on the temperature dependent

thermal properties [1-6], and others have dealt with the space dependent ones [7-8]. The measurements

are taken at the interior points and/or on the boundary points of the heat conduction medium. As far as the

practical application is concerned, the boundary measurements are more convenient than the interior

measurements. In our previous study [9], we have shown that the solutions of the IHCP could be obtained

with the boundary data only, contrary to Refs. [7] and [8], which used the interior and boundary data.

   The algorithms of Ref. [9] in which the sensitivity function [6] is applied are composed of two phases,

namely the forward problem and the inverse problem, and they are applied iteratively. In each phase, both

the heat conduction equation and the sensitivity equation are solved respectively. The forward and inverse

solutions are used to find the search step by the modified Newton Raphson method.

   In general, the ill-posedness is encountered in the inverse problem and the regularization is required.

The convergence is heavily dependent on the regularization factor as well as on the system model. Further,

the conductivity is assumed to be at least first order derivative continuous function. This means that the

system should be comprised of one material. For the case in which there are several heat conduction

media, it is difficult to obtain the solution by the conventional approach. To resolve these problems, we



take up a new approach by employing the Walsh function.

   The Walsh function was initiated by Rademacher and independently developed by Walsh in the early

1920s. In recent years, the Walsh theory has been innovated and applied to various fields in engineering

and sciences. One of the particular interests of the Walsh function is that the entire range of a function is

modeled by a Fourier-type expansion instead of being created by piecewise integration from initial

conditions with the possibility of straying from the path as errors accumulate. Even with the nonlinear

equation, it is possible to implement an expansion approach because of the special properties of the Walsh

function. Since Walsh functions have discontinuities built into their definition, they are especially suitable

for approximating situations where a function changes rapidly in time or in position [10].

2. Walsh Functions and Integration/Differential Operators

   An incomplete set of periodic rectangular orthonomal function was developed by Rademacher in 1922.

The Rademacher functions, )t(rk , have odd symmetry about origin and midpoint. This means that the

set is incomplete since the sum of any number of the functions will have odd symmetry about these two

points. It is not possible to expand a function which has even symmetry about the midpoint in a series of

)t(rk . The Rademacher functions have been combined by Walsh to form a complete orthonomal set of

rectangular waves [11]. For an example, the Walsh matrix for the case of n2 , n=3 is described in Eq. 1.























−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

==

11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

3 )n(Wal (1)

   The Walsh function has many off-springs such as Paley, Harr and Hadamard functions. They are

different only in the combination method of the Rademacher functions and can be converted each other

by use of the binary and gray numbers. All these functions have common properties of orthonomality and

the Paley functions are used in this paper. For n=3, the Paley matrix is of eight ( 32 ) by eight matrix as :
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   The Walsh's family have important properties. First, it has the orthonomalty of

                                 
0 nm∫ ,

                  n m ≠=   0,  (3)

And it is worth to note that the summation of each row or column vector is zero except the first ones. This

implies that the Walsh function can be used as an efficient injection signal pattern in a various



experiments, particularly in electric tomography.

   Any function 10  ≤≤ t),t(f , can be expanded formally in a series of the form

  )( n
0

tC)t(f n Ψ∑= , where dt)t()t(fC nn ∫=
1
0

Ψ  (4)

There is no strict constraint on the convergence. The function may be either continuous or not. However,

as the number of expansion terms increases, the error becomes small, as in all other expansion functions.

   The Walsh family can be used in the integration and differentiation of the given function very easily.

For example, the integration of the zero-th mode of the Paley function in Eq. (2) is
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It is the same for the rest modes, and the overall integration of the Paley functions is
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That is, the integration of the Paley function is described by itself with the integration operator matrix O.

For n =3, the integration operator matrix has the elements of
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Let's consider an arbitrary function 10  ≤≤ t),t(x . The Paley expansion of )t(x  up to 12 −n  is

)t()t(X)t(X)t(X)t(X)t(x nnnn PX ⋅=++++= −−−− 121222221100      ΨΨΨΨ Λ  (8)

Let )t(y be the integrated function of )t(x , and expand it by Paley. Then,

)t()t(y PY ⋅= (9)

where Y is the coefficient vector.  Since ∫ ′′=
t

td)t(x)t(y
0

,

)t(td)t()t()t(y
t

POXPXPY ⋅⋅=′′=⋅= ∫0
(10)

Hence, any function can be integrated through the multiplication of its coefficient vector by the



integration operator.

The differentiation is the inverse procedure of the integration and is obtained by the operation of

)t(
dt

)t(dy POX ⋅⋅= −1 (11)

  

3. Application to the Inverse Heat Conduction Problem

   The one dimensional time dependent heat conduction is

t
)t,x(T

x
)t,x(T)x(k

x ∂
∂=

∂
∂

∂
∂

(12)

For convenience, the density and heat capacity are assumed as unity. The problem is posed to determine

the spatial distribution of thermal conductivity with the measurement data of )t,x(T .

By letting )t,x(g
t

)t,x(T =
∂

∂
, Eq.(12) is
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At a given moment, T(x,t) and its time derivatives  are known from the measurement, and Eq. (13) can be

written as

)x(g
dx

)x(dT
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d

=






(14)

Each function of above equation is expanded by Paley as

)x()x(k PK ⋅= , )x()x(T PT ⋅= , )x()x(g PG ⋅=  (15)

Then

)x()x(
dx

)x(dT PTPOT ⋅=⋅⋅= −
1

1  (16)

And Eq. (14) has the form of

( ) ( )( ) )x()x()x(
dx
d PGPTPK ⋅=⋅⋅ 1ο (17)

where the operator ο  indicates the multiplication of element by element.

By integrating Eq. (17), the thermal conductivity is obtained from
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The equation above requires the boundary condition at 0=x . If the boundary value at 1=x  is known,

the boundary value at 0=x  can be found easily by the property of orthonormality. If no boundary

conditions are given, there are one more unknowns than the matrix size, and even in this case, the

equation can be solved by the pseudo inversing.



   Figures 1 and 2 show the validity of the Walsh (Paley) approach in obtaining the thermal conductivity

in IHCP. The number of nodes is 3225 = , including the both ends. At the initial state, the temperatures

are assumed to be all the same. As a transient condition, the boundary heat fluxes are given at both ends

as 1010 == )(q)(q . The thermal conductivities of all the nodes are arbitrarily set to 2. The measurement

is assumed to be made 20 times and to be terminated at sect 1= .

   In Fig. 1, the real value of the thermal conductivity is )xsin()x(k π2= . The results of calculation

show a good approximation. It is worth to note that the thermal conductivity is continuous at the midpoint,

but its derivatives are not. This is different from our previous study [9] in which the conductivity was

assumed to be the first order derivative function.  Figure 2 describes the calculated values against the

real values of the conductivity. The real one is  500  ,  2 .x )xsin()x(k ≤≤= π and

.x. x)x(k 150  ,  12 ≤<+=  Even in this case in which the conductivity is discontinuous, let alone its

derivatives, the calculated values follow the real values.

   It is to be noted that no iteration is necessary in the proposed approach. As time goes on, the

conductivities converge from the initially assumed values to the real ones. And the calculated values are

almost the same after 8-10 times of calculation, that is, around the t = 0.4~0.5 sec even though the

transient continues. The deviations between the real and estimated values are only dependent on the bit

numbers, not on the algorithms. Therefore, the numerical process is very stable, which is one of the

attractions of the Walsh.

   Fig. 1 The estimation of thermal conductivity        Fig. 2 The estimation of thermal conductivity

              )xsin()x(k π2=                          500  ,  2 .x )xsin()x(k ≤≤= π

                                                          150  ,  12 ≤<+= x. x)x(k

4. Conclusion

   The Walsh functions are used to obtain the space dependent thermal conductivity in one dimensional

time dependent heat conduction medium. Although it is necessary to measure the temperatures in interior

points, the Walsh reveals the real values without any numerical difficulties. The proposed algorithm is

quite different from other algorithms in that it is one-directional, that is, no iteration is necessary, and is
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numerically stable regardless of the functional characteristics of the thermal conductivity. This permits

the estimation of thermal conductivity when the medium consists of different materials.

   One of the important characteristics of the Walsh function is that the sum of row element or column

element is zero, except the first row or column vector. This property hints that the injection signal might

have a Walsh function form when it is required that the summation of the injection signals should be zero.

For example, in the electric tomography apparatus, the image reconstruction is dependent on the injection

signal, and the Walsh wave might be ideal for such a case.
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