The study on the method of the Alarm Acknowledgement in the Nuclear Power Plant

Abstract

The technology of digital system tends to be applied in the Nuclear Power Plant by developing the technology of digital system. In particular, in these days operators in Main Control Room used to operates using alarm system of CRT based display. But still, acknowledging alarms in CRT based display, operators are used to acknowledge alarms with the method of traditional acknowledgement. In this time, we have to consider the method of traditional acknowledgement when applying alarm system of CRT based display. In this paper, we study the methods of alarm acknowledgement and suggest the new method for CRT based alarm display.

,

Silence	가				
				, Acknowledg	ge Fast
Flashing					
			. Reset	Process Val	ue가
		가 가		Res	et

가

Alarm State	Flashing	Sounding		
New	Fast Flashing	On		
Acknowledge	Steady (Lit)	Off		
Clear	Slow Flashing	Off		
Reset	No Alarm	Off		

Alarm State	Flashing	Sounding	Operator Response
New	Fast Flashing	On	Silence
New	Fast Flashing	Off 🖌	Acknowledge /
Acknowledge	Steady (Lit)	Off 🖌	-
Clear	Slow Flashing	Off	Reset
Reset	No Alarm	Off 🕨	-

2

3. CRT

Stand type Hard type / / / 가 Hard-type CRT . 가 ?, ?, CRT ? •

. . 1) • 가 2) CRT

Source . 3) Flashing . CRT

.

.

가

.

가

1) CRT		Cli	ck		Fa	st Flashing	No Flashing
(Lit)		•		Source			
		Reflashin	g		,	Click	가
가	가	가					

2)			

3)	(Alarm Clear)		
		Lighting	Slow Flashing	
			,	
	(Alarm Clear)		Reset
	. Reset			New
ACK	(Acknowledge)			
		(가	가	가
	가)		
	. Reset			Flush
		Reset	CRT	

•

.

,

1 Process

2 KNGR MMI Mockup

.

가

.

×	þ			.02.22 23:52 BSAIC ALARM PAGE	s	YSTEM ALARM	CFM AID	CPS
OP	s	Ρ	SYS	DESCRIPTION	VALUE	SPT UNIT	TIME	HEXT]
R	С		CC	CCW Letdown HX OTLT Temp Hi		aar 1821	13:19:59	BACK
R	N	13	SI	SIT 1A/1B Not Repressurized	19.6	41.5 kg/c	13:10:55	Adact
R	С		CC	CCW RCP 2B Cooling Flow Lo/TRN A PPs St			12:54:08	
R	С		CC				12:54:08	
R	С		CC	CCW RCP 1B Cooling Flow Lo/TRN A PPs St			12:54:08	
R	С		CC	CCW RCP 1A Cooling Flow Lo/TRN A PPs Sta			12:54:08	1 3
RT	C			CNMT RADIATION			12:52:32	2 4
R	C	13	CV	CV LTDN Bypass Process Flow Hi	-7.1	15.1 LPM	12:52:12	КВ
R	С	23	CV	CV LTDN PURIF Filter INLT Press Hi			12:51:49	HC
R	R		CV	CV CHRG RCP 2B Seal INJ Flow Lo	0.0	22.7 LPM	12:50:48	Inc
R	R		CV	CV CHRG RCP 2A Seal INJ Flow Lo	0.0	22.7 LPM	12:50:48	_
			CV	CV CHRG RCP IB Seal INJ Flow Lo		22.7 LPM	12:50:48	BASIC
			CV	CV CHRG RCP 1A Seal INJ Flow Lo		22.7 LPM		PRIORI
R	С	23	CV	CV CHRG Line DIFF Press Lo	0.1	6328 nrm	12:50:38	CHRO
R	N	1	CV	CV CHRG PP Not Engaged			12:50:33	UACK
R		-	CV	CV RX MU PP 06P DSCH Press Lo			12:43:05	
			CV	CV CHRG RCP 2A Seal INJ Flow Hi-Hi			12:41:34	STSI
R	C	23	CV	CV CHRG Line DIFF Press Hi	0.1	11953 nrm	12:41:32	OPES
т	C	12	AP	Non-1E 480V MCC 27EN TRBL			12:35:35	FLAG
R	C		RC	RC PZR Level Lo-Lo	34.4	25 %	12:35:35	T-OUT
т	с	11	AP	Non-1E 480V MCC 28EN TRBL			12:35:35	SUPP
R			CV		0.0	352 cmW	11:35:44	-
R	C	Ē	SI	SI LPSI PP 01PA DSCH Flow Lo	0.0	13247.5 LPM	11:27:3	RO T
R	C	Ē	CV	CV VCT Press Hi	4388.3	4570 cmW	11:06:56	
RT	N			CFM Reactivity Control Violation			10:58:30	Group
R	N	13	CC	CCW TRN B S/D Cooling HX B OTLT Flow Lo/			10:57:07	
R		ä	SI	SI SIT 1B Press Lo	19.6	41.2 kg/c	10:57:06	
R	N		FC	Spent Fuel Pool Level 2A Lo		A Second Second Second	10:57:06	
т	N	1	MS				10:57:06	
т	N	1	MS	SBCS CNDSR interlock Unavailable			10:57:06	
				1 2 3 4 5 6 7			2/7	

2. CRT

4.

,

5, Reference

- 1) Human-System Interface Design Review Guideline-NUREG-0700, June 1996.
- 2) Advanced Alarm Systems : Revision of Guidance and Its Technical Basis-NUREG/CR-6684, November 2000.