

IO₃

42,261 MWd/MtU

Origin 2

/

Abstract

An Separation and recovery technique for iodide in spent pressurized water reactor (PWR) fuels has been established using a SIMFUEL simulated for spent PWR fuel. The spent PWR fuels were dissolved with mixture of nitric and hydrochloric acids (80;20 mol%) which can oxidize iodide to iodate through dissolution process. Iodide in uranium matrix and co-exist fission products was separated and recovered by organic extraction of iodine with carbon tetrachloride and by back extraction of iodide with 0.1 M NaHSO3. Recovered iodide was measured using an ion chromatograph/shielding system available for analysis of radioactive materials. In practice, a spent PWR fuel whose burnup rate was 42,261 MWd/MtU was analyzed and then the relation between the burnup and the quantity of the fission products was compared to the calculated by burnup code, Origen 2.

1.

40 GWd/MtU					0.3 mg/g
[1,2] CsI CdI					г 7 ⊦ ⊾
[3,4]		가		[5].	
I IO ₃ ⁻			가		Karlsruhe
D. Geithoff	V. Schneider	[5]			I フト I ₂
	Ŀフト IO₃ ⁻		가		I27
,				nitrosylchloride	L IO ₃ .
		. N. Lav	vi[6] D.	M. Ivak[7]	
		KMnO ₄	K_2CrO_4	IO ₃	, I. C.
Bate[8]	N	aClO	IO ₃		
	,				
, . F	I. Kamioki[9]		⁹⁹ Mo		
3 M		Ι	Ŀ		2 M NaOH
					. H. KATAGIRI, O.
NARITA[10]					
1000			가		
	20% NaOH			. Xiaolin H	lou, H. Dahlgaard[11]
					0.5
M KHSO ₃				(AG1x4,	CI form)
I2	Γ				
				42, 261	MWd/ MtU
2.					
2.1					
2.1.1 Spent PWR f	uel : 42,261 M	MWd/ MtU			

 2.1.2
 Iodide
 : CsI
 99.999%, Aldrich

 2.1.3
 ^{131}I :
 ^{131}I

•

2.1.4 : 8 M HNO₃ 50 mL 10 M HCl 10 mL . 2.2 2.2.1 - ray : ¹³¹I - ray 7 16000 (GMX- 30190- P HpGe EG&G ORTEC) 364 KeV count rate . 2.2.2 : Kottenforts(Germany) (D5309) . 2.2.3 Ion chromatograph : DIONEX Table 2 .

2.3

2.3.1 ; Hot cell 70 μ L ¹³¹I(2.0 mCi/ mL) 7 (80:20 mol%) 30 mL 7 .

97 2 • 0.5 mL(10 mg U) 2.3.2 ; Fig. 2 2.5 M 140 mg NH2OH · HCl 가 . 10 mL CCl 가 5 2 2.3.3 (); 가 5 mL 0.0001 N NH₂OH · HCl 가 2 3 5 mL vial . 0.1 N NaHSO₃ 5 mL 가 5 1 mL

•

- 3.
- 3.1 Hot cell

 Hot cell

 .

 .

 touch

 7¹

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

3.2 ¹³¹I 3.2.1

Ι

Ŀ . 가 IO₃⁻ IO_4 . $(8.0 \text{ M HNO}_3 : 10.0 \text{ M HCl}, 80 : 20 \text{ mol}\%)$ Nitroscyl-chloride O₃7ŀ 가 42,261 MWd/ MtU $13 \, {}^{13}$ 가 • $13 \, {}^{13}$ Table 3 . 가 2715 ± 83.4 CPS/mL 2970 ± 46.6 CPS/mL 8.5% Ŀ . • **3.2.2** Iodate Iodine $(IO_3^{-1} L)$ 가 (10 mg) 1 IO_3 . NH₂OH・HC1 가 Ŀ . Table 4 가 42,261, MWd/ MtU 67.9% 83.3% 15.4% **3.2.3** Iodine Iodide (L I) Ł I 0.0001 MNH2OH · HCl $13 \, {}^{13}$ 0.1M NaHSO₃ 가 . Ι Table 5 69.0% . 82.8% 13.8% . 3.3 Io d ide 100 µL 0.08 M NaCl 0.1 mL/min. Fig. 3 7, 3 NO₃⁻ 2 HSO_3^- 가 . 6 가 Γ •

3.4 ¹³¹**I**

.

가

• $^{13}{}^{1}$ I Γ 131 I 가 Table 6 가 3.5 가 . 가 가 42,261 Table 7 . Fig. 4 가 MWd/MtU · 4. 7 42.261 MWd/MtU Ŀ 131 I 69.0 ± 3.6% • 131 I 193.6 µg 322.8 µg/g 가 Origin coed2 336.1, 324.5 µg/g -4.0%, +3.6% .

가

1. E. H. P. Cordfunke and R. J. M. Konings, Journal of Nuclear Materials, <u>152</u>, 301-309 (1988).

•

- Tsutomu Sakurai, Akira, Takahashi, Niroh Ishikawa, Yoshihide Komaki, Mamoru Ohnuki and Takeo Adachi, NUCLEAR TECHNOLOGY, <u>85</u>, 206-212 (1989).
- 3. N. Boukis and E. Henrich, Radio Chimica Acta, 54, 103-108 (1991). 4. N. Boukis and E.

Henrich, Radio Chimica Acta, 55, 37-42 (1991).

- D. Geithoff and V. Schneider, Prevention of the Volatilization of fission Iodine in the dissolution of UO₂ samples" NUCLEAR RESEARCH CENTER, KARLSRUHE, KFK- 258, (1964).
- 6. N. Lavi, Journal of Radioanalytical Chemistry, 20, 41-49 (1974).
- 7. D. M. lvak, LA. Waldman, "Iodine and Cesium in oxide fuel pellets and Zircaloy-4 cladding of irradiated fuel rods", (LWBR Development Program) WAPD-TM-1394, (1979).
- 8. L. C. Bate and J. R. Stokely, " Determination of ¹²⁹I in mixed fission products by neutron activation analysis", ORNL/TM-7449, (1980).
- 9. Hiroshi Kamioki and Kiyoshi Hoizumi, "Determination of radioactive iodine isotopes in the ⁹⁹Mo produce by distillation", JAERI-M 8070, (1979).
- 10. H.KATAGIRI,O.NARITA, A.YAMATO,M.KINOSHITA, Journal of Radioanalytical and Nuclear Chemistry, Articles, 138, 187-192(1990)
- Xiaolin, H. Dahlgaard, B. Rietz, U. Jacobasen, S. P. Nielsen and A. Aarkrog, *Anal.Chem.*, <u>71</u>, 2745-2750 (1999).

Fig. 1 Appratus for spent fuel dissolution at Hot cell

Fig. 2 Schematic diagram of spent fuel digestion at Hot cell

A: Hot cell B: Digestion system C: Control box D: Control box E: O_3 generator F: O_2 gas

#35 electro valve#36 electro valve#35 water out#36 waterin#35 inlet on/off switch#36 outlet on/off switchO2 inletO3 outletO3 inlet tubedigestion system on/off switch

Fig. 3 lon chromatogram of lodide separation in 0.1 M NaHSO₃

Fig. 4 Calibration curve of lodide with standard addition method.

Table 1. Chemical property of ¹³¹I as a tracer.

Half life of ¹³¹ I	8.07 day
Chemical composition	NaI Solution, 0.1M Na ₂ S ₂ O ₃
Radioactivity	2,0 mCi
рН	8-11
Radiochemical purity	99.0.%

Table 2. Ion chromatographic conditions for the analysis of Iodide.

Separation column	AS4A-SC DIONEX
Dimension	$4 \times 250 \text{ mm}, 20 \mu \text{eq/column})$
Detection range	5 ppb 25 ppm
Sample volume Eluent	100 uL 0.08 M NaCL
Eluent flow rate	0.1 mL/min.
Detection wavelength	243 nm.

T able 3.

S.F No.	Burnup	Dissolved			
	(MW d/MtU)	Before(activity of ¹³¹ I) CPS/mL	After (activity of ¹³¹ I) CPS/mL		
#6	422,611	2775.0	3024.9		
		2774.3	2907.7		
		2596.8	2978.8		
		av. 2715 ± 83.4	av. 2970 ± 46.6		

Table 4. Recovery of Iodide on the Extraction with CCl_4 (IO₃ I₂)

	Amount of 131-Iodide. CPS/M2						
Solvent	Predict	Aqueous		Recovery (%)		Organic	Recovery (%)
		1	282.9	9.5	1	1848.8	62.2
		1	31.1	1.0		1953.7	65.8
		2	67.4	22.9	2	-	-
CCl4 2970.0			292.5	9.8	2	2120.8	71.4
	2	408.3	13.7	2	2216.5	74.6	
	2970.0	5	506.6	17.1	2	2068.5	69.6
	4	93.8	3.2	4	1961.9	66.1	
		4	805.5	27.1	4	2112.2	71.1
		5	17.0	0.6	5	1945.1	65.5
	5	19.7	0.7	5	1920.6	64.7	
			Ave. 1	0.6 ± 9.1		Ave. 6	7.9 ± 3.7

		Amount of 131-Iodide. CPS/Me					
Solvent	Predict	Aqueous		Recovery (%)		Organic	Recovery (%)
		1	2053.4	69.1	1	12.8	0.4
		1	2086.2	69.2	1	17.8	0.6
		2	2011.5	67.7	2	91.5	20.7
		2108.4	71.0	2	16.8	0.7	
0.1N		2	2220.5	74.8	2	39.3	1.3
NaHSO ₃ 2970.0	2970.0	5	2170.2	73.1	3	36.4	1.2
		4	2032.8	68.4	4	5.6	0.2
		4	1839.7	61.9	4	4.9	0.2
		5	2095.2	70.5	5	19.7	0.7
			1922.5	64.7	5	18.0	0.6
			Ave. 69	0.0 ± 3.6		Ave. 2.	7 ± 6.0

Table 5. Recovery of Iodide on the Back Extraction with NaHSO3 (I2 $\,$ I^{\cdot})

SF, No	Burnup, MWd/MtU*	Measured, µg	Average, μg (RSD, %)	Result corrected by recovery yield of ¹³¹ I tracer, μg	Average, μg (RSD, %)	
	135.9		181.7			
	141.1		193.1			
		127.3		184.4	193.6 (6.9%)	
		135.9		194.2		
6 42,261	42 261	130.2	131.2 (5.5%)	183.7		
	42,201	113.9		176.1		
		129.6		217.7		
		132.5		195.7		
		132.6		193.9		
		132.6		214.2		

Table. 6. Analytical results of iodide in spent PWR fuels by ion chromatography

* Gamma ray spectrometry by detection of ¹³⁷Cs

Table 7. Evaluation of determination reliability of iodide in PWR spent fuel of 42,261 MW d/MTU

SF.	Burnup	I/U, μ g /g					
No	(MW d/MtU)*	Origen	Standard	No	Deviation, %		
110		code 2	addition	addition			
					No. add/St.add	-4.0	
6	42,261	324.5	336.1	322.8	St.add/Origen 2	+3.6	
					No.add/Origen 2	- 0.5	

* Gamma ray spectrometry by detection of $^{\rm 137}\rm{Cs}$