2001

A Simple Two-Phase Critical Flow Model for Long Pipes

Abstract

A simple two-phase critical flow model is developed for estimating flashing flow rates through breaches in vessels or pipeworks. The model considers both subcooled and saturated conditions. The model has been tested against an extensive set of data from critical flow experiments with water as the test fluid. In addition, comparison of the predictions with other theoretical models is made. Results show that present model adequately predicts flashing flow rates through long pipes or large L/D geometries.

flashing

1.

nozzle, slit -		가
,	[1]. Richter [2]	general drift flux (GSL) [1]
space-dependent model	,	Marviken [3]
alit	[1].	
[4,5].		
	가	71-

2.

$$G^* \equiv \frac{G_c}{G_{ref}} \tag{1}$$

$$\Delta T_{sub}^* = \frac{T_{sat} - T_o}{T_{sat} - T_{ref}}$$
(2)

,

$$G_{ref} = (C_d)_{ref} \cdot \left[2 \mathbf{r}_{ref} \left(P_o - P_b \right) \right]^{0.5}$$
(3)

$$(C_d)_{ref} = \left(1 + K + f\frac{L}{D}\right)_{ref}^{-0.5}$$
(4)

$$G_{ref}$$
 $(C_d)_{ref}$ $(P_o P_b) T_{ref} = 20 \ ^{\circ}C$
(discharge coefficient) .

,

[4,5]:

 G^* 7 ΔT^*_{sub}

$$G^{*} = 1 - \frac{15.2}{1 + \exp[(\Delta T_{sub}^{*} + 0.578)/0.188]}$$
(5)
7
:
(5)

$$G_{c} = (C_{d})_{ref} \left[2 \mathbf{r} (P_{o} - P_{b}) \right]_{ref}^{0.5} \cdot \left(1 - \frac{15.2}{1 + \exp\left[(\Delta T_{sub}^{*} + 0.578) / 0.188 \right]} \right)$$
(6)
(6)
(7)
(7)
(7)
(7)
(6)

7 :

$$G_{TP} = \left[\frac{1 - x_o}{G_{x_o=0}^3} + \frac{x_o}{G_{x_o=1}^3}\right]^{-\frac{1}{3}}$$
(7)

$$G_{x_{o}=0} , 6 \qquad \Delta T^{*}_{sub} = 0.0$$

$$: G_{x_{o}=1} = C_{dg} \left\{ \left(\frac{2k}{k-1}\right) \left(\frac{P_{o}}{v_{o}}\right) \left[\left(\frac{2}{k+1}\right)^{\frac{2}{k-1}} - \left(\frac{2}{k-1}\right)^{\frac{k+1}{k-1}} \right] \right\}^{\frac{1}{2}}$$

$$C_{dg} .$$

$$(8)$$

2.

$$\mathbf{s} = \left(\sum_{i=1}^{n} \frac{(X_i - \overline{X})^2}{n-1}\right)^{0.5} \times 100 \ \%$$
(10)

$$X_{i} = \left(\frac{G_{exp} - G_{corr}}{G_{exp}}\right)_{i} \times 100 \quad \%$$

$$G_{exp} \qquad G_{corr} \qquad ,$$

$$(11)$$

n

3.1

Table 1. Predictions of the subcooled inlet critical flow data with the Park model

Experiment	Pressure (MPa)	Hydraulic Diameter, D (mm)	Flow Length, <i>L</i> (mm)	L/D	No. of Data		s (%)	Remarks
Amos et. al. ^[6]	4.1 ~ 16.2	0.25 ~ 0.76	63.5	> 83	72	- 4.4	10.4	Slit Down Flow
Ardron et al. ^[8]	0.2 ~ 0.4	26.3	1,015	38.6	31	18.5	12.1	Tube Horizontal
Boivin ^[9]	2.0 ~ 10.1	12~50	700 ~ 2,305	> 37	21	- 7.6	11.4	Tube Horizontal
Celata et. al. ^[10]	0.8 ~ 2.3	4.6	46 ~ 1,380	> 10	60	- 3.2	6.0	Tube Down Flow
Fincke et al. [11]	0.1 ~ 0.3	18.28	216	11.8	92	- 2.4	3.3	Tube Horizontal
Jeandey et. al. ^[12]	2.0~12.0	20.13	363	18.0	88	- 2.4	6.8	Tube Up Flow
John et. al. ^[7]	4.0 ~ 14.0	0.41 ~ 1.28	46.0	> 35	57	2.5	9.9	Slit Down Flow
Marviken ^[3]	2.0 ~ 5.0	200, 300, 500	> 590 > 511 > 730	> 2.9 > 1.7 > 1.5	386	1.0	5.7	Transient Pipe Down Flow
Super Mobydick ^[13]	3.0 ~ 10.0	5.2 15.5	76 156	14.6 10	28 28	-1.6	5.6	Tube Up Flow
Reocreux ^[14]	0.21~0.34	20	2,335	117	39	- 1.8	5.9	Tube Up Flow
Seynhaeve ^[15]	0.3 ~ 1.0	12.5	541	43.3	57	- 2.0	6.7	Tube Up Flow
Sozzi et. al. ^[16]	6.2	28	228.5	-	2	3.2	5.8	Transient, Venturi Horizontal
Sozzi et. al. ^[16]	5.7 ~ 7.0	12.7	108 ~ 1,778	> 5	149	- 0.9	10.5	Transient, Tube, Horizontal
Park ^[4]	0.5~2.0	1.0 ~ 7.15	40~400	>11	174	- 2.4	5.8	Tube Horizontal

Fig.	1	Table	2
1 Ig.	T	1 4010	4

Experiment	Pressure (MPa)	Hydraulic Diameter, D (mm)	Flow Length, <i>L</i> (<i>mm</i>)	<i>L/D</i> for Tube	No. of Data		s (%)	Remarks
Super Mobydick ^[13]	3.0 ~ 10.0	5.2, 15.5	76 156	14.6 10	9 20	-0.4	9.6	Tube Up Flow
Sozzi et. al. ^[16]	2.7~7.0	12.7	108 ~ 1,778	> 5.0	228	0.6	8.0	Transient, Tube Horizontal
Sozzi et. al. ^[16]	6.3 ~ 6.9	54	1,112	-	4	-12.6	3.9	Transient, Venturi Horizontal
Sozzi et. al. ^[16]	6.5 ~ 6.7	76.2	1,076	-	3	-19.3	5.3	Transient, Venturi Horizontal
Sozzi et. al. ^[16]	6.8	28	228.5	-	3	4.2	8.5	Transient, Venturi Horizontal

 Table 2.
 Predictions of the two-phase inlet critical flow data with the Park model

Fig. 1. Comparison between the model predictions and the test data in Table 2

3.2

가 [17] , 가 . Table 3 , 가 , 가 , 가 . Table 4

space-dependent model . Moody model [18], Henry-Fauske model [19], Homogeneous Equilibrium model (HEM) [1] , space-dependent model [20], Richter model [2], general drift flux (GSL) model [1] .

Table 3. Selected subcooled inlet critical flow data for the analytic models

Experiment	Pressure (MPa)	Hydraulic Diameter, D (mm)	Flow Length, <i>L</i> (<i>mm</i>)	L/D	No. of Data	Remarks
------------	-------------------	----------------------------------	---	-----	----------------	---------

Ardron et al. ^[8]	0.2 ~ 0.4	26.3	1,015	38.6	31	Tube
Boivin - 1 ^[9]	2.0~10.1	12	700	58.3	10	Rounded Entrance Tube + Diffuser
						Horizontal
Boivin – 2 ^[9]	2.0~10.1	30	2,305	76.8	6	Rounded Entrance Tube + Diffuser
						Horizontal
Boivin – 3 ^[9]	2.0~10.1	50	2240	44.8	5	Rounded Entrance Tube + Diffuser
						Horizontal
Fincke et al. ^[11]	0.1 ~ 0.3	18.28	216	11.8	92	Tube + Diffuser Horizontal
Jeandey et. al. – 1 ^[12]	2.0~12.0	20.13	363	18.0	15	Nozzle + Tube Up Flow
Jeandey et. al 2 [12]	2.0 ~ 12.0	20.13	363	18.0	73	Nozzle + Tube Up Flow
Reocreux ^[14]	0.21 ~ 0.34	20	2,335	117	28	Tube + Diffuser Up Flow
Seynhaeve – 1 ^[15]	0.3 ~ 1.0	12.5	541	43.3	26	Tube + Diffuser Up Flow
Seynhaeve – 2 ^[15]	0.3 ~ 1.0	12.5	541	43.3	31	Tube + Tube Up Flow

space-dependent model 7 . Tables 3 4 7 Table 5 Fig. 2

.

,

space-dependent model 가 Elias et al. [1] Richter model GSL model 가 가 . Richter model [2] GSL model [1] 가 Table 4 가 Fig. 3 4 (Space-dependent model Elias et al. [1]). space-dependent model 가 GSL model [1] .

가

Table 4. Selected critical flow data for model comparison

Experiment	Pressure (MPa)	Hydraulic Diameter, D (mm)	Flow Length, L (mm)	L/D	No. of Data	Remarks
Sozzi et. al. ^[16]	5.7 ~ 6.9	12.7	108	8.5	23	No. 2 Nozzle, Rounded Convergent + tube, Horizontal

						No. 2 Nozzle, Rounded
Sozzi et. al. ^[16]	5.8~6.8	12.7	159	12.4	15	Convergent + tube,
						Horizontal
						No. 2 Nozzle, Rounded
Sozzi et. al. [16]	6.3 ~ 6.9	12.7	235	18.5	12	Convergent + tube,
						Horizontal
						No. 2 Nozzle, Rounded
Sozzi et. al. [16]	6.0 ~ 7.0	12.7	273	21.5	22	Convergent + tube,
						Horizontal
						No. 2 Nozzle, Rounded
Sozzi et. al. [16]	5.7~6.8	12.7	362	28.5	19	Convergent + tube,
						Horizontal
						No. 2 Nozzle, Rounded
Sozzi et. al. [16]	6.0 ~ 6.8	12.7	553	43.5	13	Convergent + tube,
						Horizontal
						No. 2 Nozzle, Rounded
Sozzi et. al. [16]	6.4 ~ 6.9	12.7	679	53.5	96	Convergent + tube,
						Horizontal
						No. 2 Nozzle, Rounded
Sozzi et. al. ^[16]	6.1 ~ 6.9	12.7	1,823	143.5	81	Convergent + tube,
						Horizontal
S1 [16]		12.7	105	10.0	22	No. 3 Nozzle, Tube,
Sozzi et. al. 189	0.0~0.9	12.7	195	18.9	23	Horizontal
S1 [16]		12.7	222	20.0	24	No. 3 Nozzle, Tube,
Sozzi et. al. 189	0.0~0.9	12.7	322	28.9	24	Horizontal
Segri et al [16]	61 60	12.7	512	43.0	24	No. 3 Nozzle, Tube,
Sozzi et. al. 125	0.1~0.9	12.7	515	43.9	24	Horizontal
Segri et al [16]	60.60	12.7	640	53.0	17	No. 3 Nozzle, Tube,
Suzzi et. al. 125	0.0~0.9	12.7	040	53.9	1/	Horizontal

 Table 5.
 Predictions of all the data in Table 3 using the Park and analytic models

Madal	Мо	ody	Henry-Fauske		HEM		Park	
Model	Mean	S	Mean	S	Mean	S	Mean	S
Ardron et al. ^[8]	21.5	23.8	6.5	22.3	76.2	12.4	18.5	12.1
Bovin – 1 ^[9]	-18.8	11.0	-50.0	17.2	-5.3	5.7	-4.4	7.5
Bovin – 2 ^[9]	-41.0	17.0	-75.2	15.7	-14.4	27.9	-12.6	18.9
Bovin – 3 ^[9]	-3.5	7.8	-28.6	12.1	8.3	9.6	-0.2	4.6
Fincke et al. ^[11]	-2.9	2.9	-1.8	2.5	-2.9	2.9	-2.4	3.3
Jeandey et al. –1 ^[12]	-12.0	1.8	-28.2	13.1	-3.9	10.4	-5.4	5.0
Jeandey et al. –2 ^[12]	-8.1	9.3	-29.3	16.3	7.6	12.4	-1.8	7.0
Reocreux ^[14]	-65.7	10.8	-84.0	26.4	-68.0	12.0	-1.4	6.3

Seynhaeve – 1 ^[15]	-12.8	3.5	-24.0	12.3	-11.2	3.3	-1.8	6.3
Seynhaeve – 2 ^[15]	-9.4	5.5	-25.1	12.1	-8.9	5.9	-2.2	7.2

Fig. 2. Comparison of calculated relative mean differences and standard deviations between the model and the analytic models for the data in Table 4

Fig. 3. Comparison of calculated relative mean differences and standard deviations

between the model and the space-dependent models for subcooled inlet data in Table 4

Fig. 4. Comparison of calculated relative mean differences and standard deviations between the model and the space-dependent models for the two-phase inlet data in Table 4

4.

	•	가			
가	, フト flashing		,		<i>L/D</i> フト
(1) (2)	0.25 - 76.2 mm 200 mm	, <i>L/D</i> 7ト 8 <i>L/D</i> 7ト 1.5	,	フト 40 mm	

flashing

Acknowledgement

This project has been carried out under the Nuclear Research and Development Program by MOST.

Nomenclature

$(C_d)_{ref}$	discharge coefficient evaluated at 20 $^{\circ}C$
C_{dg}	discharge coefficient of pure vapor
D	diameter, mm
f	friction factor
G	mass flux, $kg/m^2 \cdot s$
G_{c}	critical mass flux, $kg/m^2 \cdot s$
G_{ref}	mass flux evaluated at 20 °C, $kg/m^2 \cdot s$
G_{TP}	critical mass flux of two-phase inlet conditions, $kg/m^2 \cdot s$
G^*	dimensionless mass flux, G_c/G_{ref}
Κ	pipe entrance loss coefficient
k	ratio of specific heats
L	(total) length of test section, mm
n	number of data
P	pressure, MPa
P_{b}	back pressure, MPa
P_o	stagnation pressure, MPa
T	temperature, $^{\circ}C$
T_{o}	stagnation temperature, $^{\circ}C$
T_{ref}	reference temperature, 20 $^{\circ}C$
ΔT_{sub}	subcooling, °C
ΔT^*_{sub}	dimensionless subcooling, $(T_{sat} - T_o)/(T_{sat} - T_{ref})$
v _o	specific volume of steam, m^3/kg
x_o	quality
r	density of water, kg/m^3
Subscri	pt
b	receiver system
С	critical
0	stagnation condition
ref	values at 20 $^{\circ}C$
sat	saturation condition
TP	two-phase condition
$x_o = 0$	saturated water
$x_{o} = 1$	all vapor

Superscript

* dimensionless

References

- [1] E. Elias and G.S. Lellouche, "Two-Phase Critical Flow," *Int. J. Multi-phase Flow*, Vol. 20, Suppl., pp. 91-168, 1994
- [2] H.J. Richter, "Separated Two-Phase Flow Model: Application to Critical Flow," EPRI NP-1800, 1981
- [3] The Marviken Full Scale Critical-Flow Tests, NUREG/CR-2671, MXC-301, 1982
- [4] C.K. Park, "An Experimental Investigation of Critical Flow Rates of Subcooled Water

through Short Pipes with Small Diameters," Ph. D. Thesis, KAIST, Korea, 1997

- [5] C.K. Park, J.W Park, M.K. Chung, and M.H. Chun, "An Empirical Correlation for Critical Flow Rates of Subcooled Water Through Short Pipes with Small Diameters," J. Kor. Nucl. Soc., Vol. 29, No. 1, pp. 35-44, 1997
- [6] C.N. Amos and V.E. Schrock, "Two-Phase Critical Flow in Slits," NUREG/CR-3475, 1983
- [7] H. John et al., "Critical Two-Phase Flow through Rough Slits," *Int. J. Multiphase Flow*, Vol. 14, No. 2, pp. 155-174, 1988
- [8] D. H. Ardron and M.C. Ackerman, "Study of the Critical Flow of Subcooled Water in a Pipe," GEGB Report: RD/B/N4299, 1978
- [9] J.Y. Boivin, "Two-Phase Critical Flow on Long Nozzles," *Nuclear Technology*, Vol. 46, Mid-Dec., 1979
- [10] G.P. Celata et al., "Two-Phase Flow Models in Unbounded Two-Phase Critical flows," *Nuclear Engineering and Design*, Vol. 97, pp. 211-222, 1986
- [11] J.R. Fincke and D.R. Collins, "The Correlation of Two Dimensional and Nonequilibrium Effects in Subcooled Choked Nozzle Flow," NUREG/CR-1907, EGG-2081, 1981
- [12]C. Jeandey et al., "Auto Vaporization d'Ecoulements Eau/Vapeur," CEN de Grenoble, Report T.T. No. 163, 1981
- [13] Bethsy Team, "Selected Results from Characterization Tests of the Bethsy Break Nozzles (2" and 6") Conducted in the Super Moby-Dick Facility," Addendum to NOTE SETh/ LES/90-104, CEN Grenoble
- [14] M. Reocreux, "A Contribution l'Etude des Debits Critiques en Recoulement Diphasique Eau-Vapeur," Doctoral Dissertation a l'Universite Scientifique et de Grenoble, 1974
- [15] J.M. Seynhaeve, "Etude Experimentale des Ecoulements Diphasiques Critiques a Faible Titre," Doctoral Dissertation, Universite Catholique de Louvain, France, 1980
- [16]G.L. Sozzi and W.A. Sutherland, "Critical Flow of Saturated and Subcooled Water at High Pressure," NEDO-13418, 1975
- [17] V. Ilic, S. Banerjee, and S. Behling, "A Qualified Data Base for the Critical Flow of Water," EPRI NP-4556, 1986
- [18] F.J. Moody, "Maximum Two-Phase Vessel Blowdown from Pipes," ASME J. Heat Transfer, 1966
- [19] R.E. Henry and H.F. Fauske, "The Two-Phase Critical Flow of One Component Mixtures in Nozzles, Orifices, and Short Pipes," *ASME J. Heat Transfer*, Vol. 93, 1971
- [20] E. Elias and P.L. Chambrë, "A Mechanistic Non-Equilibrium Model for Two-Phase Critical Flow," *Int. J. Multiphase Flow*, **10**, 1, 1984