2001

Quasi-Static Structural Optimization under the Seismic Loads

Abstract

For preliminaries to optimization of SMART under the seismic loads, a quasi-static structural optimization for elastic structures under dynamic loads is presented. An equivalent static load (ESL) set is defined as a static load set, which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at all the time intervals are employed to represent the various states of the structure under the dynamic load. They can cover all the critical states that might happen at arbitrary times. The continuous characteristics of a dynamic load are considered by multiple static load sets. The calculated sets of ESLs are utilized as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. The analysis domain gives the loading condition needed in the design domain. The design cycles are iterated until the design converges. Structural optimization with dynamic loads is tangible by the proposed method. Standard example problems are solved to verify the validity of the method.

(KAERI)

2

2. 가

$$\mathbf{M}(\mathbf{b})\ddot{\mathbf{d}}(t) + \mathbf{K}(\mathbf{b})\mathbf{d}(t) = \mathbf{f}(t) = \{0 \cdots 0 \mathbf{f}_{i} \cdots \mathbf{f}_{i+l-1} 0 \cdots 0\}^{\mathrm{T}}$$
(1)

t_a 7 s

 $\mathbf{s} = \mathbf{K}\mathbf{d}(\mathbf{t}_{a})$

(3)

. . (3) 가 . (3) . 가 • 가 .[9] 가 가 가 가 • 가 가 . (3) (1) (3)

•

 $\mathbf{s} = \mathbf{f}(t) - \mathbf{M}(\mathbf{b})\ddot{\mathbf{d}}(t) \tag{4}$

가 가 (3) (4) 가 가 . 가 가 **f**(t) . , (4) 가 가 . 가 .

3. 7ŀ

. Fig. 2

Fig. 2 The analysis domain and the design domain

5

Fig. 3 A diagram for the proposed quasi-static optimization technique

Find	Design Variables	
Minimize	F(b)	
subject to	$\mathbf{K}(\mathbf{b})\mathbf{x} = \mathbf{s}_{\mathbf{i}}(\mathbf{b})$	
	$(i = 1, \dots, No.of time steps)$	(5)
	$\Phi(\mathbf{b}, \mathbf{x})_{\mathbf{j}} \le 0$	
	$(j = 1, \dots, No. of constraints)$	

.

(5)

가

.

$$\boldsymbol{e}_{i} = \frac{\left\|\boldsymbol{b}_{i} - \boldsymbol{b}_{i-1}\right\|}{\left\|\boldsymbol{b}_{i}\right\|} \leq \boldsymbol{e}_{0} \quad \left(i = 1, 2, \cdots, \text{No. of desin cycles}\right)$$
(6)

b₁ i b₁ i l

$$2^{1}$$

 2^{1}
 2^{1}
 2^{1}
 2^{1}
 2^{1}
 2^{1}
 2^{1}
 2^{1}
 2^{1}
 2^{1}
 2^{1}
 2^{1}
 2^{1}
 3^{1}
 3^{1}
 3^{1}
 5^{1}
 $(bending modulus), S$
 $S = (60.61 + 84,000)^{1/2} - 290, 0 \le 1 \le 9,000$
 $S = \frac{1 - 8,056.3}{1.876}, 9,000 \le 1 \le 20,300$
 $A = 0.465(0)^{1/2}, 0 \le 1 \le 9,000$
 (7)

$$A = 0.465(1)^{-12}, \ 0 \le I \le 9,000$$

$$A = \frac{I + 2,300}{256}, \ 9,000 \le I \le 20,300$$
(8)

I
$$in^4$$
, S in^3 , A in^2 .
 7^{\dagger} . (9)

$$u_g = 0, t < 0; \ u_g(t) = u_{g0} \sin pt, \ 0 \le t \le \frac{p}{p}; \ u_g(t) = 0, \ t > \frac{p}{p}$$
(9)

 $u_g(t)$, u_{g0} , pp=30rad/sec; $u_{g0}=1$ in. (25.4 mm). 7^{1} .E=30 × 10^{6} psi (20.7 × 10^{6} N/cm^{2});, $\gamma=0.28$ pci (0.0077 kg/cm³).10 lb/in. (17.5N/cm) 7¹...

4.1 One-Story One-Bay Frame

.

Fig. 4 portal frame

•

(10)

.

Minimize subejct to weight $|\mathbf{s}_{max}| < 30,000 \text{ psi}(20,700 \text{ N/cm}^2)$ $|u_{max}| < 3 \text{inch} (76 \text{ mm})$ (10) $\mathbf{w}_{\text{I}} > 60 \text{ rad/sec}.$ 290 in ⁴ (12,070 cm²) < I < 20,300 in ⁴(844,886 cm²)

Table 1	The initial	values a	nd the o	optimum	results	for the	one-story	one-bay	frame (in ²	, psi,	in, Hz,	, lb)
				1			-		· · · · ·	· • ·		

	d_1	d_2	1,max	3,max	2,max	\mathbf{f}_1	No. of design cycle	Weight
Initial value	290	290	44120	41861	1.27	9.97		1,197
Opt	424.3	413.3	29912	29903	0.76	11.71	3	1,442
Ref. [8]	489	330	22536	√31619	0.77	12.03	11	1.463

4.2 Two-Story One-Bay Frame

•

4.1 1, 2 d1, 3, 4 d₂, 5 d3, 1, 3, 5, 6 6 2, 4 d_4 , $d_{0j}{=}1{,}500in^4 \ (62{,}430 \ cm^2), \ j{=}1, \ 2, \ 3, \ 4$ 0~ . 0.315 190 190 가

(11) .

Minimize weight
subejct to
$$|\mathbf{s}_{max}| < 30,000 \text{ psi}(20,700 \text{ N/cm}^2)$$

 $|u_{max}| < 3 \text{ inch } (76 \text{ mm})$ (11)
 $\mathbf{w} > 30 \text{ rad/sec.}$
 $290 \text{ in}^4 (12,070 \text{ cm}^2) < I < 20,300 \text{ in}^4 (844,886 \text{ cm}^2)$

Fig. 5 The two-story one-bay frame

			1							
	d_1	d_2	d ₃	d_4	\mathbf{f}_1	f_2	f_3	\mathbf{f}_4	Weight	
	1,max	2,max	3,max	4,max	5,max	6,max	2,max	4,max	Iteration	
Initial	1500	1500	1500	1500	7.58	30.82	97.09	140.02	6656	
value	28256	28256	34500	34500	29043	39602	2.01	1.26		
Omt	1356	2624	1376	4196	10.03	31.24	102.11	146.69	8327	
Ορι	26920	26920	27241	27241	29000	29504	1.55	0.82	4	
D-£ [0]	1719	8378	1334	533	10.67	41.85	114.8	186.40	8380	
Kef. [8]	24306	24306	7297	7297	√30665	√32598	1.31	0.62	20	

Table 2 The initial values and the optimum results for the 2-Story 1-bay frame (in⁴, psi, in, Hz, lb)

.

.

.

가

.

KAERI/RR-11888/98,

, 1999, "

- (2) ASME Boiler and Pressure Vessel Code Section III, 1998, Dynamic Analysis Methods, Appendix N, The American Society of Mechanical Engineers.
- (3) Haftka R.T. and Gürdal Z., 1991, *Elements of Structural Optimization*, The Netherlands: Kluwer Academic Publishers.
- (4) Choi, W.S. and Park, G.J., 1999, "Transformation of Dynamic Loads into Equivalent Static Loads Based on Modal Analysis," *Int. J. for Num. Meth. in Engng.*, Vol. 46, pp.29~43.
- (5) B.S. Kang, W.S. Choi, and G.J. Park, (2001), "Structural Optimization Under Equivalent Static Loads Transformed fromDynamic Loads Based on Displacement," Computers and Structures, November, Vol. 79, No. 2, pp.145-154.
- (6) , , 2000, " 7 ;" A, 24 , 10 , pp. 2568-2580.
- (7) Grandhi, R.V., Haftka, R.T., and Watson, L.T., 1986, "Design-Oriented Identification of Critical Times in Transient Response," *AIAA Journal*, Vol. 24, No. 4, pp. 649~656.
- (8) Cassis, J.H. and Schmit, L.A., 1976, "Optimum Structural Design with Dynamic Constraints," Journal of the Structural Division.
- (9) Möller, P.W., 1999, "Load Identification Through Structural Modification," *ASME Journal of Applied Mechanics*, Vol. 66, pp. 236~241.