A Multi Channel Pressure Loss Model for Irradiation Capsule of Advanced PWR Fuel

,

,

Abstract

A multi channel pressure loss model is developed to estimate the flow condition in the simulated advanced PWR fuel capsule. The proposed model is superposed on the basis of free flow principle by using pressure loss models for simple geometries presented in open literatures. Through the comparison between the experimental data and the predictions, the proposed model turns out to underpredict the pressure loss by about 4 %. So, the model is suitable as a tool for the geometry design in capsule design phase. According to the prediction results for HANARO capsule, the flow rate at the hydraulic design criteria condition is 8 kg/s with 8.8 % bypass flow fraction. It means that the candidate capsule satisfies the HANARO hydraulic design criteria with the 37 % margin.

가

 UO_2

70

MWD/kgu-rod avg.

.

Capsule . Capsule OR(Outer Reactor) 200 kPa Capsule Capsule . 가 Capsule . Capsule Yang[1] Jung[2] . Yang[1] Code 18 36 18 36 214 kPa 205 kPa DUPIC(Direct Use of . Jung[2] Spent PWR Fuel in CANDU Reactors) Capsule Capsule 5 . 10 kg/s 40 °C 35/45 °C 200 kPa OR 8.8 kg/s . . Oh[3] DUPIC Capsule 가 Capsule HANARO 가 OR Capsule . Capsule OR Capsule OR Capsule 가가 .

(1) .

1.

$$\Delta P_{total} = \sum_{i=1}^{n} \Delta P_i \tag{1}$$

.

.

$$K_i = \Delta P_i / (\frac{1}{2} \mathbf{r} V_{cb}^2)$$
 (2)

 ΔP_i , V_{cb} Cooling Block r

.

n

.

2.

2.1

.
Reynolds
Reynolds
Cooling Block

$$Re = \frac{V_{cb} \cdot D_{h,cb}}{n}$$
 (3)
 V_{ch} Cooling Block

$$V_{cb}$$
 Cooling Block , $D_{h,cb}$ Cooling Block , n
.
Capsule
Capsule
7[†] .

Capsule 1 (A) Rod Tip, Guide . Capsule Lower End Plate, Lower Housing, Housing Support, Cooling Block, Fuel Rod, Upper Housing, Upper End Plate Capsule Grapple Head Capsule . OR Lower

(4)

$$Q_{inlet} = Q_{outlet} = Q_{main} + Q_{bypass}$$
(4)

.

.

(5)

.

•

.

Capsule

(5)

$$\Delta P_{capsule} = \Delta P_{inlet} + \Delta P_{main} + \Delta P_{outlet}$$

$$\Delta P_{capsule} = \Delta P_{inlet} + \Delta P_{bypass} + \Delta P_{outlet}$$
(5)

3

Capsule

가

Capsule

(6)

$$K_{capsule} = \Delta P_{capsule} / (\frac{1}{2} \quad \mathbf{r} \quad V_{cb}^2)$$
(6)

2.2

principle)[4]

Capsule

1 [5].

Capsule OR Capsule Capsule Rod Тір Guide Capsule . [1] 18 .

[6] (7)

$$\Delta P_{inlet} = \Delta P_{inlet}^m + \frac{1}{2 \cdot \boldsymbol{r}} \left[\left(\frac{m}{A_1} \right)^2 - \left(\frac{m}{A_2} \right)^2 \right]$$
(7)

.

ΔP_{inlet}	, ΔP_{inlet}^m	, <i>r</i>	, <i>m</i>
A	1 2		

 $(K_{stl,f}, K_{cb,f}, K_{me,f}, K_{stu,f}, K_{tg,f}, K_{o,f})$:

Lower Support Tube, Cooling Block, Mini-element, Upper Support Tube, Capsule Grapple Head 가 Capsule OR [6] Blasius , D_h , , *L*,

 $(K_{hl}, K_{hu}, K_{eplo}, K_{epuo})$: Lower Housing Upper Housing

Upper Housing Capsule Capsule Lower Housing Lower End Plate Upper End Plate

(Thick Edged Orifice)

Lower End Plate

•

Upper End Plate

가

.

Lower End Plate Upper End Plate

(Thick Edge Orifice)

.

 (K_{epl}, K_{epu}) :

.

Lower/Upper Housing

No	Component	Model	Ref.
1	Friction, $(K_{st,f}, K_{cb,f}, K_{me,f}, K_{gh,f}, K_{o,f})$	$0.632 \cdot \operatorname{Re}_{i}^{-0.25} \left(\frac{L_{i}}{D_{h,i}} \right) \cdot \left(\frac{A_{r}}{A_{i}} \right)^{2}$	[5]
2	Thick Edge Orifice, $(K_{hl}, K_{hu}, K_{eplo}, K_{epuo})$	$\begin{cases} 0.5 \cdot \left(1 - \frac{A_o}{A_1}\right) + \left(1 - \frac{A_o}{A_2}\right)^2 + \mathbf{t} \cdot \sqrt{1 - \frac{A_o}{A_1}} \cdot \left(1 - \frac{A_o}{A_2}\right) + \mathbf{I} \cdot \frac{L_o}{Dh_o} \end{cases} \cdot \left(\frac{A_r}{A_l}\right)^2 \\ \mathbf{t} = f(\frac{L}{D_h}) \end{cases}$	[3] diag. 4-12
3	Thick Edge Orifice with Champed Inlet, (K_{epl}, K_{epu})	$\begin{cases} 0.25 \cdot \left(1 - \frac{A_o}{A_1}\right) + \left(1 - \frac{A_o}{A_2}\right)^2 + \mathbf{t} \cdot \sqrt{1 - \frac{A_o}{A_1}} \cdot \left(1 - \frac{A_o}{A_2}\right) + \mathbf{l} \cdot \frac{L_o}{Dh_o} \end{cases} \cdot \left(\frac{A_r}{A_l}\right)^2 \\ \mathbf{t} = f(\frac{L}{D_h}) \end{cases}$	[3] diag. 4-12
4	Sudden area increase, (K_{cb}, K_{gh})	$0.5 \cdot \left(1 - \frac{A_l}{A_r}\right)^{3/4} \left(\frac{A_r}{A_l}\right)^2$	[3] diag. 4.1
	eplo inlet epl epl See Nomenclatrue s	cb me epuo outlet define hl hu epu section for abbreviations	

Table 1. Pressure Loss Coefficient Model for Each Component

Cold Block	Grapple Head	(K_{cb}, K_{gh}) :
Cold Block	Mini-element	Grapple Head Housing

3.

DUPIC Capsule				
가	. DUPIC	Capsule	1 (a)	. DUPIC
Capsule		4	. 4 Reyno	lds
				DUPIC
Capsule	4%		. Capsule	
			C	apsule
Capsule				
가 .				
DUPIC Capsule		5	. 5	
Reynolds 가 가	가	HANARO	Capsule	
200 Кра	6.8%			
4. Capsule		가		
1 (b)		Capsule		OR
200 kPa			2	
Capsule	4.8		Mini Assembly	Housing
Capsule				OR
	3	. 3		
8 kg/s	8.8 %		12.7	kg/s
37 %				

Component	Pressure Loss Coefficient	Fraction (%)
Capsule Inlet	0.496	10.
Support Tube	0.029	0.6
Mini-elements	0.250	5.2
Grapple Head	0.012	0.3
Lower End Plate	0.608	12.6
Lower Housing	0.939	19.5
Cooling Block	0.337	7.0
Upper Housing	1.714	35.6
Upper End Plate	0.384	8.0
Expansion to Housing	0.040	0.8
Total	4.807	100

Table 2. Pressure Loss Coefficient of Each Component (Mass Flow-rate = 8 kg/s)

Table 3. Coolant Flow-rate at HANARO Design Criteria (200 kPa)

Parameter	AFA Capsule	DUPIC Capsule
Dynamic Pressure, [kPa]	41	82
Reynolds Number	150000	160000
Mass Flow-rate, [kg/s]	8.0	9.1
Bypass Fraction, [%]	8.8	6.2

Capsule

.

1)			4	%				
2)			Capsule				가	•
	8 kg/s	8.8 %			12.7 kg/s	37%		

NOMENCLATURES

.

SUBSCRIPT

DUPIC	Direct Use of Spent PWR Fuel in	CANDU	cb	cooling block
	Reactors		inlet	capsule inlet
OR	Outer Reactor		epl	lower end plate
PWR	pressurized water reactor		eplo	lower end plate in bypass channel
А	flow area	[m²]	epu	upper end plate
D	diameter	[m]	epuo	upper end plate in bypass channel
Κ	stagnation pressure loss coefficient	ent	f	friction
L	friction length	[m]	gh	grapple head
m	mass flow - rate	[kg/s]	h	hydraulic
Р	static pressure	[Pa]	hl	lower housing
PL	pressure loss		hu	upper housing
PLC	pressure loss coefficient		I	local
Q	flow - rate	[kg/s]	m	measurement
Re	Reynolds number		me	mini-element
V	Velocity	[m/s]	r	reference
			st	support tube
	GREEK LETTERS		1	inlet
			2	outlet
Δ	difference			
ρ	density	[kg/m³]		
ν	kinematic viscosity	[m²/s]		

 λ friction factor

4.

REFERENCES

- Yang Y. K., et al., "Measurements of Subchannel Velocity and Pressure Drop for HANARO Fuel Elements," KAERI/TR-735-96 (1996)
- Jung H. J., "Design and Safety Analysis Report for Irradiation of DUPIC Fuel," KAERI/TR-1157/98 (1998)
- 3. Oh D. S., et al. "A Pressure Loss Model for Irradiation Capsule of Advanced PWR Fuel," KNS autumn meeting Taejon, (2000)
- 4. Hoerner, S. F., "Fluid Dynamic Drag," 2nd edition Published by the Author, (1965)
- Idelchik, I. E., "Handbook of Hydraulic Resistance," 3rd edition Published by Begell House, (1996)
- Flank M. White, "Fluid Mechanics," 3rd edition Published by McGraw-Hill Book Co. (1995)

(B) Advanced PWR

Figure 1. Configuration of Capsules

Figure 2. Schematic Diagram of Analysis Channel

Figure 3. Pressure Loss Coefficient Calculation Procedure

Figure 4. Comparison of Pressure Loss Coefficient between Measurement and Prediction of DUPIC Capsule

Figure 5. Bypass Fraction of DUPIC Capsule