Task Analysis and Classification of Emergency Tasks in Nuclear Power Plants for Human Error Analysis

,

Abstract

For human error analysis, the structure and situation of a task should be analyzed in advance. The paper introduces Structured Information Analysis (SIA) as a task analysis method for error analysis, and delineates the result of application on the emergency procedure of Korean Standard Nuclear Plants (KSNPs). From the task analysis about emergency procedure of KSNP, total 72 specific task goals were identified in the level of system function, and 86 generic tasks were classified from the viewpoint of physical sameness of task description. Human errors are dependent on task types so that the result of task analysis would be used as a basis for the error analysis on the emergency tasks in NPPs.

1.

가

가가 가 . (Human Reliability Analysis : HRA) 가 가 HRA , [1,2,3]. 가 (task analysis) • 가 가 HRA HRA HRA . HRA 가 , (SIA) . 72 가 , 86 .

,

2.

,

.

,

. , [5].

,

(HTA) [4]

가

,

,

.

가 가 가 가 가 가 가 가 Rasmussen [6]. (performance influencing factors), (situation factors)가 , 가 가 , 가가 HRA 가 HRA 가 가 HRA 가 , HRA 가 • [7] HRA • 가 가 가 . 11 가 , 30 HRA 가 가 가 가 HRA 가 , , . .

,

,

- - (,)
- -
- /
- -
- /
- -
- -
- -
- _
- -
- (,)
- 가
- -
- (,)
- -
- -
- •
- /
- , _
- 3.

,

SIA

- , アトー・
 - , ,
 - HRA

,

- - - .
 - 가 [8]. 1
 - .
 - .
 - .

가

, 가 가 가 , 가 가 , 가 (goal -가 oriented) 가 , . , MMI HRA 가 . 가 • Rasmussen [9] (detection; D), (state identification; I), (planning; P) (observation; O), (execution; E) . 가 가 -가 HRA 가 1 , HRA 가 , . , .

.

.

PSA

가 (multiple barriers)

,

가

.

,

.

.

.

가

.

(safety function)

1.

			3
RCS	(RCS))	3
			,
RCS	RCS		,
			, 가
	RCS		,
			,
RCS		RCS	, ,
			,

2. 3,4

,

- 01							
- 02							
				-01 ~	-	07	
- 01		()		(
)			
- 02			(LOCA)				
- 03							
-04							
- 05							
- 06							
- 07							
- 01							가
- 02							
- 03							
-04	RCS			RCS			
- 05	RCS			RCS			
- 06		RCS			RCS		
- 07							
- 08							
- 09		가	가		가	가	
- 10							

4.2

.

,

.

-

.

(energy)

Abstraction level : (mass)

• Process function level : (mass) (energy) (flow)

•

• System function level : (function) (state)

• Component state/control level :

, 8 abstraction level , 27 process function level , 67 system/component function level 7 . 3

Ultimate Goal		Abstract Function (AF)	Process Function (PF)	System Function (SF)	Related System/Component (CF/CM)	
		Maintain Core	Maintain Primary	Provide Forced Circulation	RCP	
			Circulation	Provide Natural Circulation	SG	
			Supply Emergency Core Cooling Water	Provide HPSI Flow	HPSI, SIAS	
				Provide LPSI Flow	LPSI	
		Heat Removal		Provide SIT Flow	SIT	
	Maintain Fuel			Maintain ECC Water Source	RWT, SIT	
				Provide Hot/Cold Leg Recirculation	HPSI, LPSI	
				Provide Long-term Recirculation	CTMT Sump, RAS	
	Integrity	Maintain Subcriticality	Shutdown Reactor	Insert Control Rod	CRDM	
			Supply Emergency Borated Water	Provide HPSI Flow	HPSI	
				Supply Boron Source	RWT	
Limit				Supply CVCS Emergency Boration	CVCS	
				ESFAS Reset	HPSI	
Radioactive Release			Prohibit RCS Boron Dilution	Monitor RCS Boron Concentration	RCS	
Release				Check Boron Dilution in Cross-over Leg	RCS, RCP	
	Maintain Reactor Pressure Boundary	Maintain RCS Inventory	Supply Emergency Core Cooling Water	Provide HPSI Flow	HPSI, SIAS	
				Provide LPSI Flow	LPSI	
				Provide SIT	SIT	
				ESFAS Reset	HPSI, LPSI, SIT	
			Control PRZ Level	Control Charging & Letdown Flow	CVCS	
				Control SI Flow	HPSI	
			Identify/Isolate LOCA	Isolate RCS from Interface Systems	SDS, SCS isolation valves	
				Monitor Coolant Leakage to CCW	CCW Radiation Alarm, CCW Surge Tank	
			Identify/Isolate Faulty SG	Identify/Isolate Faulty SG	SG, MSS, AFWS, MFWS	

3. 3,4

(goal)

2

.

.

(mean)

-

(step)

-03 (

2

)

.

-

-

.

.

-

.

2. LOCA

4.3 가 70 86 가 7 가 500 86 가 86 (generic . task) . 4 . 72 5 . 가 LOCA, 86 SGTR, ESDE 86

4.

Pressurizer	Maintain PRZ Pressure	Maintaining PRZ Pressure				
(PRZ)	Maintain PRZ Level	Maintaining PRZ Level				
	Isolating Faulty SG	Isolating Faulty SG				
		Isolating Faulty SG and Establishing Heat Sink for RCS Cooldown				
Steam		Maintaining SG Level (in case of SGTR)				
Generator	Maintain Feed Water	Verifying Main/Auxiliary Feed Water Provision				
(SG)	Supply	Establishing SG Feed Water Source				
	SG Cooldown and	SG Cooldown and Depressurization (in case of SGTR)				
	Depressurization	Establishing Heat Sink for RCS Cooling				
	Control CVCS flow	Controlling Charging and Letdown				
		Establishing Letdown Flow via CVCS				
		Providing (Injecting) Coolant using Charging Pumps				
		Establishing Water Source for Charging Pumps				
	Establishing and	Controlling (Throttling) HPSI Flow				
RCS	Control SI flow	Maintaining HPSI Flow Rate				
Inventory		Establishing Coolant using SI and CVCS				
		Establishing Coolant using SI and CVCS to Ensure Heat Sink for RCS Cooldown				
		Controlling SI Flow				
		Injecting Coolant using SI Pumps				
		Ensuring SI Flow Rate through SIAS Activation				
		Establishing RCS Coolant Injection Flow Rate				

5.

No							
59	SIAS/CIAS	LOCA 4 SGTR 4 ESDE 4	7} A , SIAS .(123.9 kg/cm CIAS 8, 9).	7¦ , SIAS/ CIAS		123.9 kg/c㎡A ? A/102B/102C/102D. A/104B/104C/ 104D
60	SI >=	LOCA 5 SGTR 5 ESDE 5	SIAS7 SI : (2,3) 7 LPSI 7	; HPSI ,	SIAS , HPSI/LPSI , SI , Chg	SI SI SI SI SI SI SI SI	, , , , 가 가
	7) <= 121 kg/cmÅA RCP	LOCA 6. SGTR 6. ESDE 7.	SIAS7 121 kg/cm²A , RCP 1 RCS , RCP		7ł , RCS , RCP		

- [1] Dougherty, E., "Human Reliability Analysis : Where shouldst thou turn?", Journal of Reliability Engineering and System Safety, 29(3), 283-299, 1992.
- [2] Hollnagel, E., Cognitive Reliability Assessment Methodology, Academic Press, London. 1997.
- USNRC, "Technical Basis and Implementation Guidelines for A Technique for Human Event Analysis (ATHEANA)", Draft Report for Comment, USNRC, 1998.
- [4] Kirwan, B., "A Guide to Task Analysis", Tayler & Francis, 1992.
- [5] ," ⁷[†] ", ,1977.
- [6] Rasmussen, J., "Information Processing and Human-Machine Interaction: An Approach to Cognitive Engineering", Elsevier, 1986.
- [7] Kim, J. and Jung, W., "Proposal of Performance Influencing Factors for the Assessment of Human Error under Accident Management Situations", Proceedings of International Conference of PSA, Washington DC, 1999.
- [8] Jung, W., Kim, J. and Yoon W., "Structured Information Analysis for Human Reliability Analysis of Emergency Tasks in Nuclear Power Plants", Journal of Reliability Engineering and System Safety, 71(1), 213-32, 2001.
- [9] Yoon, W.C., Lee, Y.H., Kim, Y.S., "A Model-based and Computer-aided Approach to Analysis of Human Errors in Nuclear Power Plants", Journal of Reliability Engineering and System Safety, 51, 43-52, 1996
- [10] ," 3,5 ",1998.