
Proceedings of the Korean Nuclear Society Spring Meeting

Cheju, Korea, May 2001

Development of Software Safety Analysis Method for Nuclear Power Plant I&C

Systems in Requirement Specification Based on Statechart and SCR

Jung Hwan Lee, Seo Ryong Koo, Han Seong Son, Poong Hyun Seong

Korea Advanced Institute of Science and Technology

373-1 Kusong-Dong, Yusong-Gu

Taejon Korea 305-701

Abstract

In recent years, Instrumentation and Control (I&C) system based on digital computer technology has

been widely used throughout industries. These industries such as Nuclear Power Plant (NPP) have safety

critical systems. Thus, safety critical system must have sufficient quality to assure a safe and reliable

design. In this work, a formal requirement analysis method for Nuclear Power Plant (NPP)

Instrumentation and Control (I&C) systems is proposed. This method use the Statechart diagram,

Software Cost Reduction (SCR) formalism and ISO table newly suggested in this paper for checking the

modeled systems formally. The combined method of utilizing Statechart, SCR and ISO table has the

advantage of checking the system easily, visually and formally. This method is applied to the Water Level

Monitoring System (WLMS). As a result of the formal check, one reachability error is detected.

I. Introduction

In recent years, Instrumentation and Control (I&C) system based on digital computer technology has

been widely used throughout industries. These industries such as Nuclear Power Plant (NPP) have safety

critical systems. If these safety critical systems had serious failures, the consequences would have an

effect on the public health and safety. Thus, safety critical system must have sufficient quality to assure a

safe and reliable design. For that reason, the safety and reliability of system must be considered when it is

developed. If not, it would spend plenty of time, efforts and cost.

Up to the present, there have been many analysis methods proposed for the safety verification.

However, in this paper, a new method for safety verification is introduced. This method is to develop how

to verify the safety of system in Requirement Specification Based on Statechart and Software Cost

Reduction (SCR) with several checklists.

The Statechart [1] is an extended form of conventional finite state machines. It provides the concepts

of hierarchical and event broadcasting. These features make Statechart a very powerful language to

specify complex systems. However, it supports only simulation-based checking of safety properties, that

is, verification is performed heuristically and no decisive conclusion can be made. [2] Formal

specification can lessen requirements errors by reducing ambiguity and imprecision and by making

instances of inconsistency and incompleteness obvious. Given a formal requirements specification, formal

analysis can detect many classes of errors, some automatically. Among formal specification, SCR is

selected in this work since tables are easy to understand and the tabular notation facilitates industrial

application of the SCR method. [3]

The procedure for formal requirement analysis is composed of system modeling and formal checking.

System is visually modeled using Statechart, and then it is checked with SCR that is converted from

Statechart and Input-State-Output (ISO) table that is newly proposed in this paper.

The main focus of this work lies in the development of a requirement analysis method through

combining Statechart, SCR and ISO table which is developed newly in this paper.

This paper is organized as follows. In chapter II, we explain the Statechart and SCR used in this

paper for formal requirement verification. In chapter III, we introduce a formal requirement analysis

method using several checklists. Water Level Monitoring System (WLMS) was used as an example to

illustrate the method introduced in this paper, in chapter IV. A conclusion of the paper and further work is

included in chapter V.

II. Related Works: Statechart and SCR

II.1 Statechart

The Statechart proposed by D. Harel expand upon the State machine by providing constructs for

hierarchy (the decomposition of states), concurrency (being in more than one state at a time) and

broadcasting. (the communication between concurrent states) [1][4] Hierarchy in Statecharts may be

looked at from two perspectives. From a top-down viewpoint, hierarchy is the decomposition of a state

into more basic states. From bottom-up, hierarchy provokes the ability to encapsulate basic states that

have a common behavior with a higher level state. A state may be decomposed into concurrent

(orthogonal) sub-states. The encompassing state is designated an and-state and the construct to

decompose the state is called an and-line. A state may be decomposed to any number of concurrent

components using the and-line construct. This construct denotes the notion of concurrent sub-states. This

notion of being in more than one state at any given time is handled through the principle of concurrency

(orthogonality). The combination of hierarchy and concurrency simplify the modeling of large, complex

systems by extending the principles of state transition diagrams and reducing the clutter associated with

them. Concurrent components (or individual Statecharts) rarely exist independently. It is therefore,

necessary to synchronize their interaction. This is accomplished through the principle of broadcast. [1]

Movement from one state to another state is represented by a transition arrow drawn from the source

state to the target state. A textual label is placed on this transition to indicate the stimulus and/or the

condition under which the transition is to occur and what, if any, resultant action is to take place. The

syntax of a label is:

event [condition] / action

An event is the instantaneous occurrence of a stimulus (trigger), a condition is the presence or

absence of a value over time(for example, Boolean true or false) and an action is the event or

manipulation which occurs when transitioning from one state to another. Figure II.1 is example of

Statechart diagram.

II.2 Software Cost Reduction (SCR)

A recent study of industrial application of formal methods concludes that formal methods, including

those for specifying and analyzing requirements, are “beginning to be used seriously and successfully by

industry … to develop systems of significant scale and importance” [5]. Included in the study is the SCR

method for specifying requirements. Introduced more than a decade ago to describe the functional

requirements of software unambiguously and concisely, the SCR method has been extended recently to

describe system, not just software or requirements and to incorporate techniques for representing

nonfunctional requirements, such as timing and precision. Formal specification can lessen requirements

errors by reducing ambiguity and imprecision and by making instances of inconsistency and

incompleteness obvious. Given a formal requirements specification, formal analysis can detect many

classes of errors, some automatically.

 Among formal specifications, SCR is selected in this work since tables are easy to understand and

the tabular notation facilitates industrial application of the SCR method. The tables in SCR specifications

consist of condition tables, event tables, and mode transition tables. Each table defines a function. A

condition table describes an output variable or a term as a function of a mode and a condition. An event

table describes either as a function of a mode or an event. A mode transition table describes a mode as a

function of another mode and an event. While condition tables define total functions, event tables and

mode transition tables may define partial function because some events cannot occur when certain

conditions are true [3]. Figure II.2, II.3, II.4 are typical forms of condition table, event table, mode

transition table, respectively.

Fig II.1 Example of Statechart diagram

Modes Conditions

m1 c1,1 c1,2 … c1,p

m2 c2,1 c2,2 … c2,p

… … … … …
mn cn,1 cn,2 … cn,p

ri v1 v2 … vp

Fig II.2 Condition Table

Modes Events

m1 e1,1 e1,2 … e1,p

m2 e2,1 e2,2 … e2,p

… … … … …
mn en,1 en,2 … en,p

ri v1 v2 … vp

Fig II.3 Event Table

Old Mode Events New Mode
m1 e1,1 m1,1

e1,2 m1,2

… …
e1,k1 m1,k1

… … …
mn en,1 mn,1

en,2 mn,2

…` …
en,kn mn,kn

Fig II.4 Mode Transition Table

III. Formal Requirement Analysis Method

III.1 Formal method

In developing of safety critical system such as Nuclear Power Plant, it must be considered safety,

reliability and effectiveness of system. Generally, development of software is generally composed of 5

phases, which are requirement analysis, design, implementation, testing and maintenance. Among these

phases, requirement analysis phase is the most important in order to assure a safe and reliable design.

Thus, formal method is used so as to perform the safety analysis and to examine the consistency and

completeness in requirement analysis phase.

Formal methods are approaches, based on the use of mathematical techniques and notations, for

describing and analyzing properties of software systems. That is, descriptions of the system are done

using notations which are based on mathematical expressions rather than a natural language.

Formal methods offer two principles benefits in software development. First the use of a precise

mathematical notation eliminates the inaccuracy and ambiguity that is inherent in natural language

expressions. Formal methods also make it possible to analyze or prove, via rigorous mathematical

techniques, certain properties of software descriptions. A developer may prove that a specification is

complete and internally consistent or that the products of given phase of the software process are

consistent with those of a previous phase.

In this work, the formal requirement analysis method involves the following steps. First, the system

requirements are modeled using Statechart. This model offers an advantage to the verification process in

that the easy communication between use and developer is possible. Then, this is converted to SCR

specification and is checked using selected checklists and ISO table.

III.2 Visual modeling using Statechart

Visual modeling is a way of thinking about problems using models that depict real-world ideas in the

visual method. Therefore, models are useful for understanding problems and communicating with

everyone involved in the project (customer, domain, experts, analysts and designers). Modeling promotes

better understanding of requirements, cleaner designs and more maintainable systems. In this work,

system requirements are modeled using Statechart diagrams.

III.3 Converting Statechart to SCR Specification

For the formal check of the system requirements, SCR is selected in this work because tables are easy

to understand and the tabular notation facilitates industrial application of the SCR method. The tables in

SCR specifications are condition tables, event tables, and mode transition tables. Each table defines a

function. A condition table describes an output variable or a term as a function of a mode and a condition,

an event table describes either as a function of a mode and an event. A mode transition table describes a

mode as a function of another mode and an event.

In order to convert Statechart diagrams to SCR specifications easily, the converting procedure is

defined in this work. The first step of the procedure is to find an initial mode in Statechart diagrams and

start SCR specification from this initial mode. The second step is to define each operation of class as each

mode of SCR specification. The third step is to assign the location of modes using the numbered events in

Statechart diagrams and then to convert the states to modes and the trigger events to events in sub

diagrams. The fourth step is to convert each diagram to each SCR specification. Finally, in final state, we

convert [trigger event / output event] to condition table in each page because condition table represents

the total function of the system.

III.4 Safety checklists

The approach presented in Jaffe et. al. (1991) work [6] is to build a formal, finite-state model of the

requirement specifications and then to analyze this model to ensure that its properties match the desired

behavior (e.g. determinism). The authors accomplish this by stating criteria (usually formal predicates). In

this section, however, the safety checklist was developed as a translation of the criteria into an informal,

natural language format. These checklists are represented in [7] and we use them partially no.4

determinism, no.14 reachability and no.15 hazard analysis. And they are added coverage, disjointness for

consistency check and completeness. But last checklist is not applied in this paper. Although this checklist

is the most important of these checklists, thus it is performed in future work.

III.5 Safety verification using selected checklists

In this work, SCR specification converted from Statechart are checked formally for finding errors

and ambiguities of system requirements. The checklists used in this paper are enumerated below. These

checklists, which determine whether the specifications are well formed, are independent of particular

system state. They are the forms of static analysis. [3]

j Coverage: Each condition table satisfies the Coverage property. That is, each variable described

by a condition table is defined everywhere in its domain

k Disjointness: To make the specifications deterministic, each condition, event, and mode transition

table must satisfy the disjointness property. That is, in a given state, each controlled variable and term

has a unique value, and if a state transition occurs, the new state is unique.

l Determinism: On a given input, the systems always follow the same path through the code ,that is,

system’s behavior is deterministic.

m Completeness: Each variable and modes in mode transition tables is defined.

n Reachability: All modes and modules of the specified software are reachable. (used in some path

through the code)

The checklists j,k,l,m are used with SCR tables composed of condition table, event table and

mode transition table. These are checked by making use of following method. [3]

Each SCR table describes a table function, called Fi, for some entity ri. Table functions define the

values of the output variables, terms, and mode classes in SCR requirements specifications. Each entity

defined by a table is associated with exactly one mode class, Mj, 1 ≤ j ≤ N. To represent the relation

between an entity and a mode class, we define a function µ, where µ(i) = j if entity ri is associated with

mode class Mj. Using this notation, Mµ(i) denotes the mode class associated with entity ri.

Figure II.2, 3, 4 are the typical formats of condition, event and mode transition table, a representation

of the information in each table as a relation ρi, and a set of properties which guarantee that ρi is a

function. Given ρi, we can derive the table function Fi. Figure II.2 shows a typical format for a condition

table with n+1 rows and p+1 columns. Each condition table describes an output variable or term ri as a

relation ρi between modes, conditions, and values, i.e., ρi = {(mj, cj,k, vk) ∈ Mµ(i) X Ci X TY(ri)}, where Ci

is a set of conditions defined on entities in RF that is a set of entity names r. ρi has the following four

properties:

1. The mj and the vk are unique.

2. Υ
n

j 1=
mj = Mµ(i) (All modes are included).

3. For all j: ∨ =

p

k 1
cj,k = true (Coverage check: The disjunction of the conditions in each row of

the table is true.)

4. For all j, k, l, k≠ l: cj,k ∧ cj,l = false (Disjointness check: The conjunction of the conditions

in each row of the table is false).

These properties guarantee that ρi is a function.

Figure II.3 illustrates a typical format for an event table with n+1 rows and p+1 columns. Each event

table describes an output variable or term ri as a relation ρi between modes, conditioned events, and

values, i.e., ρi = {(mj, ej,k, vk) ∈ Mµ(i) X Ei X TY(ri)}, where Ei is a set of conditioned events defined on

entities in RF. ρi Has the following two properties:

1. The mj and the vk are unique.

2. For all j, k, l, k ≠ l: ej,k ∧ ej,l = false (Determinism check: The conjunction of the

conditioned events in each row of the table is false).

These properties and assumptions on input events guarantee that ρi is a function.

Figure II.4 shows a typical format for a mode transition table. A mode transition describes an entity ri

that names a mode class Mµ(i). The table describes ri as a relation ρi between modes, conditioned events,

and modes, i.e., ρi = {(mj, ej,k, mj,k) ∈ Mµ(i) X Ei X Mµ(i)}, where Ei is a set of conditioned events defined

on entities in RF. ρi has the following four properties:

1. The mj are unique.

2. For all k ≠ k’, mj,k ≠ mj,k’, and for all j and for all k, mj ≠ mj,k.

3. For all j, k, k’, k ≠ k’: ej,k ∧ ej,k’ = false (Determinism check: The conjunction of the

conditioned events in each row of the table is false).

4. For all m∈Mµ(i), there exists j such that mj = m or there exist j and k such that mj,k = m

(Completeness check: Each mode in the mode class is in either ρi’s domain or its image).

These properties and assumptions on input events guarantee that ρi is a function. It is easy to show

that a mode transition table with the format shown in Figure II.4 can be expressed in the format of an

event table. Hence, a mode transition table can be expressed as an event table function Fi.

Reachability check is not used SCR table, but used ISO table newly proposed in this paper. Figure

III.1 is the typical format of ISO table. ISO table is composed of 3 columns that are included Input, State

and Output. Each mode of system must has input and output variables or semantic syntax. Thus, A set of

input, mode(state), output is filled with ISO tables. In order to check the reachability, we apprehend the

state transition using Statechart diagram first, compare input of state with output of that, finally we can

find the errors that every mode(state) is not reachable.

Input State Output
input1,1

input1,2
Mode 1

output1,1

output1,2

input2,1

input2,2
Mode 2

output2,1

output2,2

… … …

Fig III.1 Typical format of ISO table

IV. Application: Water Level Monitoring System (WLMS)

IV.1 System Requirements

The requirements specification of a water level monitoring system (WLMS) used in this application

comes from [8]. The system consists of two modeclasses: one that describes system behavior when the

system is operating correctly and one that describes the behavior when the system is failed. But we only

studied the OPERATING modeclass because FAILURE modeclass is simple and uninteresting.

OPERATING modeclass is comprised of four modes.

OPERATING: The system is running.

STANBY: The system has been stopped, but has not failed.

SHUTDOWN: The water level has fallen outside allowable limits, which may cause the system

to half if the water level is not restored to within the hysteresis range within 200ms.

TEST: The system is tested.

The system always starts in mode STANDBY.

IV.2 Visual Modeling of WLMS using Statechart

This section describes the Statechart visual models representing the WLMS system requirement. The

Statechart diagrams are modeled by Statemate[1] that is visual modeling tool. Figure IV.1 shows the

Statechart diagram of WLMS

Fig IV.1 The Statechart diagram of WLMS

IV.3 SCR Specification Converted from Statechart

This section describes the SCR specification converted from Statechart diagram. SCR specifications

are constructed by using the converting procedures as mentioned in section III.3. Figure IV.2 shows the

mode transition table and condition table of WLMS.

IV.4 Formal Checks

In this section, we check the WLMS requirement specification using the checklists listed III.5

manually. Checking procedures of each checklist is represented in section III.5 As the result of

verification, among the checklists, errors are not found in coverage, disjointness, determinism and

completeness check, but in reachability check, one error is detected. In reachability checking, we use the

ISO table mentioned above. In Fig IV.3, the STANDBY state has the variable of WaterLevel in Output,

but not in Input. Thus, STANDBY state has the possibility that no transition is occurred when the WLMS

system is STANDBY state.

Old Mode Event New Mode

@F(Within Limits) WHEN
InsideHys Range=FALSE and
SlfTst Pressed=FALSE and

SlfTst Interval=FALSE

SHUTDOWN
OPERATING

@T(SlfTst Interval) WHEN
SlfTst Pressed=TRUE

TEST

Mode Condition

Shutdown
WaterLevel<LowLevel

and WaterLevel>HighLevel LowLevel ≤ WaterLevel ≤ HighLevel

Alarm On Off

Fig IV.2 SCR specification of WLMS

Old Mode Event New Mode

@T(ResetInterval) WHEN
InsideHys Range=TRUE and

Within Limits=TRUE
OPERATING

STANDBY

@T(SlfTst Interval) WHEN
SlfTst Pressed=TRUE

TEST

Old Mode Event New Mode

@T(InsideHys Range) WHEN
Within Limits=TRUE and

SlfTst Pressed=FALSE and
SlfTst Interval=FALSE and

Shutdown LockTime=FALSE

OPERATING

@T(Shutdown LockTime) WHEN
SlfTst Pressed=FALSE and

SlfTst Interval=FALSE
STANDBY

SHUTDOWN

@T(SlfTst Interval) WHEN
SlfTst Pressed=TRUE

TEST

Old Mode Event New Mode
TEST @T(TestInterval) STANDBY

Input State Output

TestInterval
ShutdownLockTime

STANDBY
ResetInterval

ResetBtnPressed
WaterLevel

ResetInterval
ResetBtnPressed

WaterLevel
OPERATING

WaterLevel
SlfTestBtnPressed

SlfTestInterval

WaterLevel SHUTDOWN

ShutdownLockTime
WaterLevel

SlfTestBtnPressed
SlfTestInterval

SlfTestBtnPressed
SlfTestInterval

TEST TestInterval

Fig IV.3 ISO table of WLMS

V. Conclusion and Future Works

In this work, a formal requirement analysis method for Nuclear Power Plant (NPP) Instrumentation

and Control (I&C) systems is proposed. This method use the Statechart diagram, Software Cost

Reduction (SCR) formalism and ISO table newly suggested in this paper for checking the modeled

systems formally. The combined method of utilizing Statechart, SCR and ISO table has the advantage of

checking the system easily, visually and formally.

This method is applied to the Water Level Monitoring System (WLMS). As a result of the formal

check, one reachability error is detected.

In the future work, we make a plan to apply the last checklist that is not applied in this paper, which

is backward hazard analysis. Additionally, we are planning to use this formal requirement analysis

method in real NPP components, such as protection system and monitoring system since this method can

be highly time and cost effective for detecting errors in requirement specification safety analysis.

References

[1] “Statemate 4.5 User Reference Manual”, I-Logix Inc. Burlington, MA, Aug. 1992.

[2] Kyo C. Kang and Kwang I. Ko “Formalization and Verification of Safety Properties of Statechart

Specifications”, IEEE Software Engineering Conference 1996 Proceedings, Asia Pacific, Dec. 1996 pp.

16-27.

[3] Constance Heitmeyer and Bruce Labaw, “Consistency Checking of SCR-Style Requirements

Specification”, International Symposium on Requirements Engineering, March, 1995.

[4] D.Harel, “Statecharts: A visual formalism for complex systems”, Sci. of Comput. Prog., Vol. 8, pp.

231-274, 1987.

[5] D. Craigen et al. “An international survey of industrial applications of formal methods.”, Technical

Report NRL-9581, NRL, Wash., DC, 1993.

[6] Jaffe, M. S., Leveson, N. G. Heimdahl, M. P. E., and Melhart, B. E., Software Requirements Analysis

for Real-Time Process-Control Systems, IEEE Trans. Software Engineering, 17, 241-258 (1991).

[7] Robyn R. Lutz, “Targeting Safety-Related Errors During Software Requirements Analysis.” J.

Systems Software 1996; 34; 223-230.

[8] J. van Schouwen, “The A-7 requirements model: Reexamination for real-time systems and an

application to monitoring systems,” Dept. of Computing and Information Science, Queens’s University,

Kingston, Ontario, Canada, Tech. Rep. TR-90-276, May 1990.

	분과별 논제 및 발표자

