
Proceedings of the Korean Nuclear Society Spring Meeting

Cheju, Korea, May 2001

Application of Discrete Function and Software Control Flow to Dependability

Assessment of Embedded Digital System

Jong Gyun Choi and Poong Hyun Seong

Department of Nuclear Engineering

Korea Advanced Institute of Science and Technology

373-1 Kusong-dong, Yusong-gu, Taejon, Korea 305-701

Abstract

This article describes a combinatorial model for estimating the reliability of the embedded digital

system by means of discrete function theory and software control flow. This model includes a coverage

model for fault processing mechanisms implemented in digital system. Furthermore, the model

considers the interaction between hardware and software. The fault processing mechanisms make it

difficult for many types of components in digital system to be treated as binary state, good or bad. The

discrete function theory provides a complete analysis of multi-state system as which the digital system

can be regarded Through adaptation software control flow to discrete function theory, the HW/SW

interaction is considered for estimation of the reliability of digital system.

Using this model, we predict the reliability of one board controller in a digital system, Interposing

Logic System (ILS), which is installed in YGN nuclear power units 3 and 4.

Since the proposed model is general combinatorial model, the simplification of this model becomes

a conservative model that treats the system as binary state. Moreover, if information for coverage factor

of fault tolerance mechanisms implemented in system through fault injection experiment is obtained,

this model can consider detailed interaction of system components.

1. Introduction

The use of digital systems in nuclear instrument and control system (I&C) prevails because of

their increased capability and superior performance compared with the analog systems. However, it is

very difficult to evaluate the reliability of digital systems because they include the complex fault

processing mechanisms at various levels of the systems. Software is another obstacle in reliability

assessment of the systems that requires ultra-high reliability. There are ongoing debates in industry,

academia, and the international standards community on the problem whether software reliability can be

quantified or not [1]. In addition, the reliability of digital systems has to be assessed considering

software, hardware and SW/HW interactions because the software consideration cannot be fully

understood apart from hardware considerations and vice versa [2-4]. In the hierarchical functional view

of a digital system shown in Figure 1, the software system is designed to accomplish functions that the

digital system is required to perform. The software system is composed of software modules. The

software modules perform their allotted tasks through the combination of instruction sets provided by

the microprocessor. The parts of hardware components such as microprocessors and memories are used

for processing of one instruction. That is, in order that the digital system completes its required function,

the software determines the correct sequence in which the hardware resources should be used. The

failure of system, thus, occurs when the software cannot arrange the sequence of use of the hardware

resources correctly or when the one or more of used hardware resources have the faults though the

software has determined the correct sequences of use of hardware resources.

Many techniques have been discussed for analyzing the reliability of systems. There are three

classical models for analyzing system reliability: Reliability Block Diagram (RBD) technique, Fault

Tree Analysis (FTA) technique, and Markov modeling technique [5]. In order to assess reliability of

system, RBD and FTA techniques use combinatorial models in which the causes of system failure can be

expressed in terms of combinations of component failures. Combinatorial models include graph models

used for the analysis of network reliability, fault trees and reliability block diagram.

Combinatorial models have been considered inappropriate for modeling coverage of fault tolerant

systems. However, coverage model of fault tolerant system was developed to incorporate coverage

modeling into combinatorial models [6-7]. The method for analyzing multi-state systems developed in

[8] provides the concept for describing systems that are composed of a hierarchy of levels.

System

S/W Modules

S/W Instructions

H/W Components

System

i0

h0

Level 0
Mapping Function: g

Level 1
Mapping Function: gi

Level 2
Mapping Function: gi,j

Level 3

m1

m0

i2

i1

h1

h2

h3

h4

Figure 1. Hierarchical Functional Architecture of Digital System at Board Level

This work describes a combinatorial model for estimating the reliability of the nuclear digital

instrumentation and control system by means of discrete function theory. This model includes not only

coverage model of fault processing mechanisms implemented in digital system but also model that

considers the interaction between hardware and software. The discrete function theory [9] provides a

complete analysis of multi-state system as which the digital system can be regarded since the fault

processing mechanisms make it difficult for many types of components in system to be treated as binary

state, good or bad. In this work, the concept of coverage model provided in [6] is extended for modeling

the fault tolerance mechanisms implemented hierarchically in digital system. Since, when the system

reliability is estimated, the software should not be considered separately from the hardware, the effects

of software control flow on system reliability is considered.

Using this model, we predict the reliability of one board controller in a digital system, Interposing

Logic System (ILS), which is installed in YGN nuclear power units 3 and 4. Since the proposed model is

general combinatorial model, the simplification of this model becomes a conservative model that treats

the system as binary state. Moreover, if information for coverage factor of fault tolerance mechanisms

implemented in system through fault injection experiment is obtained, this model can consider detailed

interaction of system components.

2. Model

2.1. Discrete Function Theory

2.1.1 Logic Network

Figure 2 shows the elementary logic gates, AND/OR. Each inputs of logic gates can have integer

values, 0, 1, 2, … , n. The output of AND gate is the minimum of all the inputs and the output of OR

gate is the maximum of all the inputs. A logic network is then defined as circuit composed of these

gates.

x ^x ^...^xn-1 n-2 0

xn-1 n-2 0 x ... x

x0
x1

xn-1

x0
x1

xn-1

Input Output

Figure 2. Logic Gates

2.1.2 Discrete Function, Integer Function and Logic Function

A function LSf →: is a discrete function when the sets S and L are finite non-empty sets. If

the domain S is the Cartesian product of n finite sets Si, the domain S is denoted by

∏ −=−− ≡××××=
0

10121 ni inn SSSSSS Λ .

A discrete function is an integer function defined as LSf
ni i →∏ −=

0

1
: , where each of the sets

L and Si are formed by non-negative integers. Therefore, an integer function is a mapping

}1,...,1,0{}1,...,1,0{:
0

1
−→−∏ −=

rmf
ni i with r and mi the cardinalities of the sets L and Si

respectively.

An integer function is a logic function when the sets L and Si (i = 0, 1, …, n-1) have the same

cardinality. Thus, a logic function is a mapping with r the cardinality of the sets L and Si such that

}1,...,1,0{}1,...,1,0{: −→− rrf n .

For example, when a system that is composed of two components can be in three states, 0

(Successful Operation), 1 (Undetected Failure) and 2 (Detected Failure) and both of two components

also have three states respectively, the system is in s state when maximum state of states of the both

components is s. Therefore, the system can be modeled mathematically by logic function (OR gate) with

r = 3 and n = 2. When state variable of component i is xi, this system has a graphical representation as

shown in Figure 3 and the mapping function of this system has tabular form as shown in Table 1.

x1

f
x2

0, 1, 2

0, 1, 2

0, 1, 2

component 2

component 1
system

x x1 2

Figure 3. Modeling of digital system composed of two components by OR logic gate

Component 2 (x2)

Component 1 (x1) 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

Table 1. Function Table of example given by Figure 3

2.1.3 Computation Schemes and discrete functions of functions

A computation scheme σ is defined as a finite sequence),...,,(110 −Nfff of functions fj (j = 0, 1,

… , N-1) when there are exist a function hi and n functions, ,
0j

f ,
1j

f …,
1−nj

f (
kj

f ∈σ; jjk <) such

that),...,,(
110 −

=
njjjij fffhf , where SSf n

j →: and SSh n
i →: . That is to say, the computation

scheme is the computation sequence for obtaining the output of logic network constructed by an

interconnection of many logic gates. Figure 4 shows an example of a network composed of 4 logic gates

with three inputs, x, y and z. Table 2 shows the computation scheme of the network given by Figure 4.

First of all, for obtaining the output s of logic network, intermediate output o1 is calculated using inputs x

and y through function denominated as 1, Then, intermediate outputs o2 and o3 are calculated using input

z through functions denominated as 2 and 3 respectively. Finally, the output s is computed using

intermediate outputs o2 and o3 through function denominated as 4. Therefore, the computation scheme of

logic network provide by Figure 4 is (1, 2, 3, 4).

x
y

z

3

s1

2

4
o1

o2

o3

Figure 4. A network composed of 4 functions

Function

denomination
Operation

x x

y y

z z

1 H1(x, y)

2 H2(x, z, 1)

3 H3(y, z, 1)

4 H4(2, 3)

Table 2. Computation scheme of the network given by Figure 4

2.2. Coverage Modeling of System components

Generally digital systems are composed of a hierarchy of levels [10]. Faults and errors may be generated

at any of the levels in the hierarchy. Figure 6 is an example of a hypothetical system composed of three

hierarchical levels. If an error is not detected at the level in which it originated, the detection of the error

is left to higher levels. Similarly, if the current level lacks the capacity to recover from a particular

detected error, appropriate information about the detected error must be passed onto a higher level.

Application

Macrocode

Hardware

Incorrect coding of algorithm Reasonability Checks
Job retry

Process retry

Bus Cycle retry
Replication

Environmentally produced
transient

Alpha particles flip memory
state Memory protection violation

Level Typical error sources Typical error
detection technique

Typical error
recovery technique

Figure 5. Typical error and recovery techniques at multiple system levels

due to imperfect coverage

Figure 6 shows the general structure of a coverage model representing a recovery process initiated

when a fault occurs. The entry point to the model signifies the occurrence of the fault and the 3 exits

signify 3 possible outcomes. The transient recovery exit (labeled TR) represents the correct recognition

of, and recovery from, a transient fault. Successful recovery from a transient fault restores the system to

a consistent state without discarding any components. The detected fault exit (DF) denotes the

determination of the permanent nature of the fault. Although the fault is detected, recovery from the

detected fault is passed onto a higher level because recovery techniques of the current level lacks the

capacity to recover from the detected fault, The undetected fault exit (labeled UF) is reached when a

fault is not even detected. This type of fault can cause the higher-level components to operate

erroneously. Each exit in the coverage model has an exit probability associated with it which is

determined by solving the appropriate coverage model. Thus we define [TRij, UFij, DFij] to be the

probability of taking the [Transient Recovery, Undetected Fault, Detected Fault] exit, given that a fault

occurs. The three exits are mutually exclusive and their probabilities sum to 1.

Coverage
Model

of component
at level

j
i

Fault Occurs

Recovery
of transient fault
of component j
at level i

Detected Fault
of component j
at level ii

Undetected Fault
in component j
at level i

Component
at level i

j

Figure 6. Coverage Model of Fault Tolerant System

2.3 Modeling of Embedded System

2.3.1 Modeling of Hardware Components

To determine state probability, it is assumed that a component has the three states, 0, 1 and 2. The

states of a component are given by

l 0: the component operates correctly

l 1: the component operates erroneously, but the coverage model does not know this.

l 2: the component operates erroneously, and the coverage model knows this.

If the failure of hardware component i is distributed exponentially and the failure rate of the

hardware component is λi, then cumulative failure probability is tietF λ−−= 1)(. When the state

variable of a hardware component i is xi, state probability is given by

Pr{xi = 0} = Pr{no faults occurs in component i} + TR3i⋅Pr{fault occurs in component i}

= t
ii

t
i

t ii eTRTReTRe λλλ −−− −+=−⋅+)1()1(333 ,

Pr{xi = 1} = UF3i⋅Pr{fault occurs in component i} =)1(3
t

i
ieUF λ−−⋅ = t

ii
ieUFUF λ−− 33 ,

Pr{xi = 2} = DC3i⋅{fault occurs in component i} =)1(3
t

i
ieDC λ−−⋅ = t

ii
ieDCDC λ−− 33 ,

where Pr{xi = 0} + Pr{xi = 1} + Pr{xi = 2} = 1 and TR3i + UF3i + DF3i = 1.

2.3.2 Modeling of Software Instructions

The state of an instruction execution depends on not only the state of all hardware resources

required for the instruction execution and instruction itself. That is to say, in order for one instruction to

be executed successfully, all of hardware resources required for the instruction execution must operates

correctly and the instruction itself must have no fault that implemented into instruction by coding errors.

The state of the instruction is defined by

l 0: the instruction operates correctly

l 1: the instruction operates erroneously, but the coverage model at instruction level does not

know this.

l 2: the instruction operates erroneously, and the coverage model at instruction level knows this.

When the state variable of the instruction is y, state probability is given by

Pr{y = 0} = Pr{no faults occurs in the instruction } + TR2i⋅Pr{fault occurs in the instruction } =

iiiiii pTRTRpTRp)1()1(222 −+=−⋅+ ,

Pr{y = 1}= UF2i⋅Pr{fault occurs in the instruction} =)1(2 ii pUF −⋅ = iii pUFUF 22 − ,

Pr{y = 2}= DC2i⋅{fault occurs in the instruction } =)1(2 ii pDC −⋅ = iii pDCDC 22 − ,

where Pr{y = 0} + Pr{y = 1} + Pr{y = 2} = 1 and TR2i + UF2i + DF2i = 1.

For example, an Assembly code, ANI 01(Assembly 8085), uses hardware resources;

Microprocessor and ROM. This instruction is thus modeled by a logic OR gate as shown in Figure 7.

x1

0, 1, 2

0, 1, 2 0, 1, 2

0, 1, 2
y

MicroProcessor

ROM

Instrution
ANI 01

x0

x x y1 0
g i,j

Figure 7. Model of Software Instruction

2.3.3 Modeling of Software Modules

Each of the software modules, m0, m1, …, m i is composed of instruction sets. The state of software

module is dependent on states of its instruction sets. That is to say, in order for software module to

execute its intended function successfully, all of instructions executed by the software module must

operate successfully. Therefore, each of the software modules, g1, g2, …, gi i s a logic function of

functions. The state of the module is defined by

l 0: the module operates correctly

l 1: the module operates erroneously, but the coverage model at module level does not know

this.

l 2: the module operates erroneously, and the coverage model at module level knows this.

When the state variable of the module is z, state probability is given by

Pr{z = 0} = Pr{no faults occurs in the module } + TR1i⋅Pr{fault occurs in the module }

= iiiiii qTRTRqTRq)1()1(111 −+=−⋅+ ,

Pr{z = 1}= UF1i⋅Pr{fault occurs in the module} =)1(1 ii qUF −⋅ = iii qUFUF 11 − ,

Pr{z = 2}= DC1i⋅{fault occurs in the module } =)1(1 ii qDC −⋅ = iii qDCDC 11 − ,

where Pr{z = 0} + Pr{z = 1} + Pr{z = 2} = 1 and TR1i + UF1i + DF1i = 1.

z

g i

g i,1

g i,0

g i,n-1

...

Figure 8. Model of Software Module

2.3.4 Application of Software Control Flow to Logic Network

The operational profile of the embedded system determines the control flow of the software. If I is

the input domain set of the software, then it can be partitioned into an indexed family {Ii} with the

following properties:

(a) Υ
1

0

−

=
=

n

i iII ,

(b) i ≠ j ⇒ φ=∩ ji II .

To consider control flow of software by input domain, we define a set C called control set and a set

SWi as }1,...,1,0{ −= nC and SWi = {r0,i, r1,i, … , rn-1,i} respectively. n is the number of input

domains and element rk,i of SWi is a binary random number defined by



 −

=
 otherwise ,0

domain input by execution software of sequencein is g module if 1 ki
,

Ir
r ik

The element k of set C means that the input domain Ik is selected for software execution.

Additionally, the switching function is defined as ∏ −

=
→

1

0
:

p

i iSWCsf , where p is the number of

software module. Therefore, the state of digital system is obtained by computation scheme (g0, g1, …, gp-

1, sf, f).

m1

m3

m4

m2

m0

Figure 9. Control flow of example software

z

x0
x1
x2x3

x4

(r ^) (r ^) (r ^)
 (r ^) (r ^)

z,0 0 z,1 1 z,2 2

zc3 3 z,4 4

x x x
x x

sf

f

Figure 10. Logic gate of Example Software of Figure 6

For example, Figure 9 shows the control flow of software. It is assumed that all of software

modules have the same state se, {0, 1, 2}. In this figure, the path number of software is 4. Thus, the

input domain can be partitioned into {I0, I1, I2, I3} and software control set C is {0, 1, 2, 3}. It is assumed

that the software executes the sequence of software modules, g1, g2, g3, g4 and g5 as follows:

l If i ∈ I0, then, m0 → m1 → m2 → m3 → m4

l If i ∈ I1, then, m0 → m1 → m2 → m4

l If i ∈ I2, then, m0 → m2 → m3 → m4

l If i ∈ I3, then, m0 → m2 → m4

When xi is the state variable of module gi and z is the state variable of software control set C, the

logic network of Figure 9 is shown in Figure 10.

3. Model Application to ILS system

The target ILS software is a part of AFS-1000 system developed by Forney International

Cooperation and installed in YGN nuclear power units 3 and 4. It is written in the Intel 8085 assembly

language using top-down modular design techniques. Reliability of ILS software is predicted only

considering the software failure by memory faults.

Hardware Application

CPU 8085 SIZE 72 Byte

MEMORY 64k EPROM EXECUTION TIME 379 Clock time

CLOCK FREQ. 1 Mhz CHECKING PERIOD 5 Minutes

Table 2. Information of application software

x1

x2

x0

g1,0

g3,0

g0,18

g0,0

g2,0

g2,5

g3,1

g4,0

g4,32

g0

g2

g3

g4

g1

y0

z2

z3

z4

z0

z1

C

:
:

y18

:

y20

y19

y25
y26

y27

y28

y60

:
:

...
...

...

...

...

...

...

...

f

sf

Figure 11. Logic Network of application software

As shown in Table 2, the memory in the system is the Erasable Programmable Read Only

Memory (EPROM) and the capacity of the memory is 64k bites. The clock frequency is 1Mhz. The

sample program that is shown in Appendix is a part of the executive program that consists of the various

subroutines that generate the logic to perform miscellaneous functions (ANDs, ORs, Counters, etc.).

Appendix shows the Assembly code of application software. The first column denominates the

module function. The second column denominates the mapping functions of instructions. The third

column represents the hardware components. Final column describes assembly codes of application

software. Figure 11 shows the logic network of application software.

4. Application Results

For model application to ILS system, the failure rates of all hardware components are assumed to

be10-7/hr. Figure 12 shows the state probability of system when any fault tolerance mechanisms are not

considered and Input domain of software is always I0. That is to say, (TRij, UFij, Dfij) = (0, 1, 0) and I =

I0. This result is equal to the result calculated by part count method used in MIL-HNBK-217. Therefore,

it indicates that the simplification of model proposed in this work is combinatorial model in which the

system and components are regarded binary state, GOOD/BAD.

Figure 13 shows the state probability when the fault tolerance mechanisms at only hardware

component level is considered and Input domain of software is always I0. That is to say, (TR3j, UF3j,

Df3j) = (0.8, 0.1, 0.1), j = 0, 1, 2 and I = I0. The result indicates that state probability of system goes to

steady state value. The steady state value depends on the values, TR3j, UF3j and Df3j

Figure 14 shows the state probability when any fault tolerance mechanisms are not considered and

Input domain of software is always I3. That is to say, (TR3j, UF3j, Df3j) = (0, 1, 0), j = 0, 1, 2 and I = I3.

Although the shape of state probability is similar to that of Figure 12, the values of state probability

shows the different result with that of Figure 12.

0.0 5.0x10
6

1.0x10
7

1.5x10
7

2.0x10
7

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e
Pr

ob
ab

ili
ty

Time(hr)

 0 State(Correct Operation)
 1 State(Undetected Faillure)
 2 State(Detected Faillure)

Figure 12. State probability of system without fault tolerance and software consideration

0 1x107 2x107 3x107 4x107

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 0 State(Correct Operation)
 1 State(Undetected Faillure)
 2 State(Detected Faillure)

St
at

e
Pr

ob
ab

ili
ty

Time(hr)

Figure 13. State probability of system with fault tolerance of hardware components

0.0 5.0x10
6

1.0x10
7

1.5x10
7

2.0x10
7

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e
Pr

ob
ab

ili
ty

Time (hr)

 0 State Probability(Correct Operation)
 1 State Probability(Undetected Failure)
 2 State Probability(Detected Failure)

Figure 14. State Probability of system with consideration of Software Control Flow but without

consideration of fault tolerance mechanisms

5. Conclusions

In this work a combinatorial model was described for estimating the reliability of the nuclear

digital instrumentation and control system by means of discrete function theory. This model includes not

only coverage model of fault processing mechanisms implemented in digital system but also model that

considers the interaction between hardware and software.

Since the proposed model is general combinatorial model, the simplification of this model

becomes a conservative model that treats the system as binary state. Moreover, if information for

coverage factor of fault tolerance mechanisms implemented in system through fault injection experiment

is obtained, this model can consider detailed interaction of system components.

This modeling method is particularly attractive for embedded system in which medium size

software is implemented such as digital protection systems of nuclear power plants since it requires very

laborious work to be applied to systems in which large software is implemented.

Reference

[1] R. W. Butler and G. B. Finelli, “The Infeasibility of Quantifying the Reliability of Life-Critical Real-

Time Software”, IEEE Transactions on Software Engineering, Vol. 19, No. 1, pp. 3-12, January 1993.

[2] J. G. Choi and P. H. Seong, “Software Dependability Models under Memory Faults with Application

to a Digital system in Nuclear Power Plants”, Reliability Engineering and System Safety, No. 59, pp.

321-329, 1998.

[3] K. K. Goswami and R. K. Iyer, “Simulation of Software Behivior Under Hardware Faults,” Proc. On

Fault-Tolerant Computing Systems, pp. 218-227, 1993.

[4] J. C. Laprie and K. Kanoun, “X-ware reliability and availability modeling,” IEEE Trans. Software

Eng., Vol. 18, No. 2, pp. 130-147, Feb. 1992.

[5] N. Viswanadham and M.G. Singh, “Reliability of computer and control systems”, North-Holland ed.,

1987.

[6] S. A. Doyle, J. B. Dugan and F. A. Patterson-Hine, “A Combinatorial Approach to Modeling

Imperfect Coverage”, IEEE Trans. Reliability, Vol. 44, No. 1, pp. 87-94, March, 1995.

[7] M. Veeraraghavan and Kishor S. Trivedi, “A Combinatorial Algorithm for Performance and

Reliability Analysis Using Multistate Models”, IEEE Trans. Computers, Vol. 43, No. 2, pp. 229-234,

Feb. 1994.

[8] X. Janan, “On multistate system analysis,” IEEE Trans. Reliability, Vol. R-34, pp. 329-337. Oct.

1985.

[9] M. Davio, J. P. Deschamps and A. Thayse, “Discrete and Switching Functions”, McGraw-Hill ed,

1978.

[10] D. P. Siewiorek and R. S. Swarz, “Reliable Computer Systems: Design and Evaluation”, A K Peters

ed, 1998.

Appendix

Level 1 Level 2 Level 3 Code

g0

g0,0

g0,1

g0,2

g0,3

g0,4

g0,5

g0,6

g0,7

g0,8

g0,9

g0,10

g0,11

g0,12

g0,13

g0,14

g0,15

g0,16

g0,17

g0,18

MicroP, ROM, RAM
MicroP, ROM, RAM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM, RAM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM

0000 MAN_AUTO: LXI H, FAOF
0003 LXI D, FGPF
0006 MOV B, M
0007 INX H
0008 MOV A, M
0009 INX H
000A MOV C, A
000B CMA
000C ANA B
000D MOV B, A
000E LDA FAOF+13D
0011 ORA C
0012 ANA M
0013 INX H
0014 ORA B
0015 ORA M
0016 INX H
0017 ANI 01
0019 JZ AUTO_MAN1

g1
g1,0 MicroP, ROM, RAM 001C STAX D

g2

g2,0

g2,1

g2,2

g 2,3

g2,4

g2,5

MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM

001D AUTO_MAN1 MOV B, M
001E INX H
001F MOV A, M
0020 INX H
0021 ANI 01
0023 JZ AUTO_MAN2

g3
g3,0

g3,1

MicroP, ROM
MicroP, ROM, RAM

0026 XRA A
0027 STAX D

g4

g4,0

g4,1

g4,2

g4,3

g4,4

g4,5

g4,6

g4,7

g4,8

g4,9

g4,10

g4,11

g4,12

g4,13

g4,14

g4,15

g4,16

g4,17

g4,18

g4,19

g4,20

g4,21

g4,22

g4,23

g4,24

g4,25

g4,26

g4,27

g4,28

g4,29

g4,30

g4,31

g4,32

MicroP, ROM, RAM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM, RAM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM, RAM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM, RAM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM, RAM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM, RAM
MicroP, ROM
MicroP, ROM
MicroP, ROM
MicroP, ROM, RAM

0028 AUTO_MAN2 LDAX D
0029 INX D
002A MOV C, A
002B MOV A, B
002C CMA
002D STAX D
002E INX D
002F MOV A, M
0030 INX H
0031 ANA C
0032 ANA M
0033 INX H
0034 STAX D
0035 INX D
0036 MOV A, M
0037 INX H
0038 ANA C
0039 ANA M
003A INX H
003B STAX D
003C INX D
003D MOV A, M
003E INX H
003F CMA
0040 STAX D
0041 INX D
0042 MOV A, M
0043 ORA C
0044 STAX D
0045 INX D
0046 MOV A, C
0047 CMA
0048 STAX D

Assembly code of application software

	분과별 논제 및 발표자

