$CF_4/O_2/N_2$

Uranium Dioxide Reaction in a Ternary CF₄/O₂/N₂ Plasma Gas for the TRU Decontamination Application

,

			,
N_2	5%	가	フ ト CF ₄ /O ₂

가 .

TRU

•

2

가

, R.F.

Abstract

To advance the reaction rate of UO₂ with CF_4/O_2 R.F. plasma, experiments with N₂ added CF_4/O_2 plasma under R.F. power were carried out. Along with those experiments by intermittent weight loss measurements, an optical study is investigated. In this study, experimental variables are the ratio of N₂ to CF_4/O_2 gas, substrate temperature, and plasma power. The ratio, CF_4/O_2 , is maintained to be four since it is reported to be the optimum in the binary gas mixture system for UO₂ etching process. It is found that when small amount of N₂ is added to CF_4/O_2 plasma, the etching rate can be enhanced almost twice compared to that of CF_4/O_2 plasma without N₂ gas. And it is proportional to plasma power and substrate temperature. Optical emission spectra focused on the fluorine density is thoroughly analyzed to support the results since the fluorine atom plays a significant role in the chemical etching of UO₂ in the mixture gas plasma. It revealed that the fluorine atom density reaches a maximum at the optimized N₂/CF₄/O₂ plasma, regardless of the R.F. power and temperature, and the etching rate of UO₂ is closely proportional to the fluorine atom density.

I.

TRU

 N_2

가

0.1%

5)

 CF_4/O_2

가

7 − CF₄:O₂ =

•

	CF ₄ /	O ₂	N_2		가			
			, CF ₄ /O	$_{2}/N_{2}$		R	R.F.	
						フ	'F	
				1			. 2	
		,						(OES,
optica	al emission spectr	oscopy, Ocea	an Optics, Inc.)					
	. 3						가	
	(mass flow contro	oller, MKS)					13.56 MHz	R.F.
			가					
	3m	m		(the	rmocouple)フ	'F		
					16 liter			
10cm	가	가	,		(rotary p	oump)	10 ⁻³ Torr	. ,
	(diff	usion pump)		10-6	Torr		•	
	800	가			. R.F.		600 W	7
	CF ₄ , O ₂	N_2	가 99.999%)				0.5
sccm	(standard cc per	minute)	100sccm					
		-1						
		71						
							(low speed die	mond
() ()	0.2	5mm 74		,			(low speed dia	amona
saw)	0.5	7L					000	
	200 20	י ד ר ר						
	200 20	5 -1	•					
		10 ⁻⁵ g	가			(BP 210	D, Sartorius)	
		C						
					1.6×10 ⁻⁶	Torr	200	
bakin	g		$CF_4/O_2/N_2$					
CF_4	O_2	40 sccm	10 sccm			4 : 1		0.3
Torr			0 ~ 6 sccm	N_2	가	R.F.	50 ~200 W	가

 60 .

 CF_4/O_2 .

 7 CF_4 O_2

 7 N_2 7

 etchant
 .
 .

R.F. 100 W , Ocean Optics OOIBase Operating Software .

,

III.

5) CF_4/O_2 CF_4 O_2 가 N_2 4⁶⁾ CF_4/O_2 가 4 OES R.F. . CF₄ O_2 O_2 가 20% 5 . 가 . . CF_4/O_2 가 ,

, , R.F. . monolayer

Molecular Layer Etching Rate =
$$\frac{N_a/M}{(N_a \mathbf{r}/M)^{2/3}} \frac{x}{A} \frac{1}{t}$$
 (monolayers/min)

x = (g), A = (cm²), t = (min) Na = 6.022045×10²³ (/mol), = 10.96(g/cm³), M = 270.03(g/mol)

6	R.F.		00 W,	300	300		
			. CF ₄ O ₂		50 sccm		N_2
3 sccm	가	가	12 sccm	가	. CF ₄	O_2	

		600 monolayers/	min			
100 W, 290			. N ₂		5% 가	가
	1200 monolayers/min	1	가	N_2	2	가
2 가	가		CF_4	O_2	N_2	가
		$CF_4 O_2$		4:1		
50 sccm	\mathbf{N}_2	가				
	. 7					가
N ₂ 5%	가			2	가 가	
8	R.F.					가
. CF ₄	O ₂			N_2		가
R.F.	N_2	가		CF_4	O_2	
	2 가	가 기	ŀ	가	가	가
	フトフト N ₂		가			
						9
R.F.	가		7	ŀ	,	
가		가 2	가 가	•		
가			10			
가	5% 가	CF_4/O_2			2	가
IV.						
			0			
CF_4/O_2			6)			
		2	N			0 10 0/
71	$CF_4 O_2$	3	N ₂	CF_4/O_2	71	0 ~ 12 %
71 ,	N ₂ 5%	71	2	가	· 1	, CF_4/O_2
150	w, 290	2000	ı , .	1000	monolayers	/min ,
N ₂	71	2000 mono	layers/min		7	
N		(OES, Optical E	mission Speci	roscopy)		
, N ₂	1	$\gamma r = 2$	1			
7171				NT	-	7 L
~ ~			٦L	. 1 N ₂		і , ре
	CF_4/O_2		∠ L			К.Г.

- 1) J. A. Partrige, R. E. Lerch, and G. P. Bosuego, *Decontamination of TRU Contaminated Metals*, HEDL-TC-1503, August (1979).
- 2) W. D. Bond, U. C. Mailen, and G. E. Michaels, *Evaluation of Methods for Decladding LWR Fuel for a Pyroprececing-Based Reprocessing Plant*, ORNL/TM-12104 (1992).
- 3) P. A. Haas, D. D. Lee, and J. C. Mailen, *Reaction of Uranium Oxides with Chlorine and Carbon or Carbon Monoxide to Prepare Uranium Chlorides*, ORNL/TM-11792, November (1991).
- J. J. Barghusen, A. A. Jonke, N. M. Levitz, M. J. Steindler, and R. C. Vogel, *Fluid-Bed Fluoride Volatility Processing of Spent Fuel Reactor Materials,* Progress in Nuclear Energy, Series III, Vol. 4, Process Chemistry, C. E. Stevenson, E. A. Mason, A. T. Gresky (eds.), Pergamon Press, (1970) 347.
- 5) J.W. Coburn, IEEE Trans. on Plasma Science, 19 (1991)1048.
- Y. Kim, J. Min, K. Bae, and M. Yang, Uranium Dioxide Reaction in CF₄/O₂ RF Plasma, J. Nucl. Mater., 270 (1999)253.

 \mathfrak{S}

5 CF₄ O₂ (total flow rate: 50 sccm, R.F. power: 100 W)

 $(CF_4/O_2 \text{ flow rate: 50 sccm, reaction time 60 min})$

6

7 N₂ 7 CF_4 O₂ (CF₄/O₂ flow rate: 50 sccm, R.F. plasma power 100 W)

 $8~R.F. \label{eq:constraint} (CF_4/O_2 \mbox{ flow rate: 50 sccm, } N_2 \mbox{ flow rate: 2.5 sccm, substrate temperature: 300} \mbox{, reaction time: 60 min)}$

9 R.F. (CF₄/O₂ flow rate: 50 sccm, N₂ flow rate: 2.5 sccm)

(CF₄/O₂ flow rate: 50 sccm, N₂ flow rate 2.5 sccm, R.F. plasma power 100 W, reaction time 60 min)