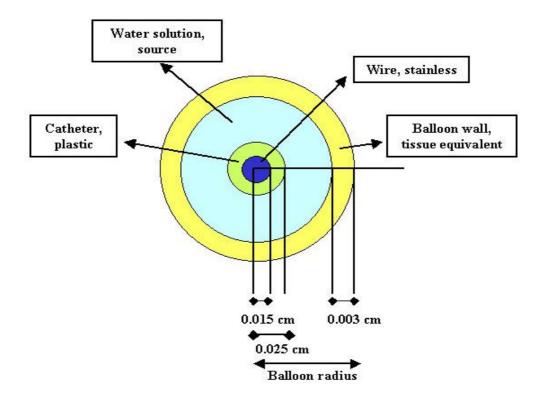
Re-188

Dose Distribution Calculation Using Monte Carlo Simulation in Balloon Filled with Re-188 to Prevent Restensis

(PTCA) 가 가 가 Re-188 6가 1.5 mm 4.0 mm , 30 mm 가 가 **EGSnrc** 0.1 mm 1 mm . MCNP 가

Abstract


Intraluminal irradiation of coronary is able to reduce the resteosis of neointimal hyperplasia after percutaneous transluminal coronary angioplasty (PTCA). Several animal studies have done therapy using beta-emitter radionuclides. It is necessary to calculate the absorbed dose accurately in order to appropriate therapy. Therefore we have investigated dose calculation using Monte Carlo method in this study. Balloons from 1.5 mm to 4.0 mm diameter were modeled. They were assumed to be of length 30 mm. We had calculated absorbed dose using EGSnrc code system, and then evaluated that using MCNP4B. There is no significant difference between the absorbed doses from each code. We could calculate appropriate irradiation time by using of dose distribution.

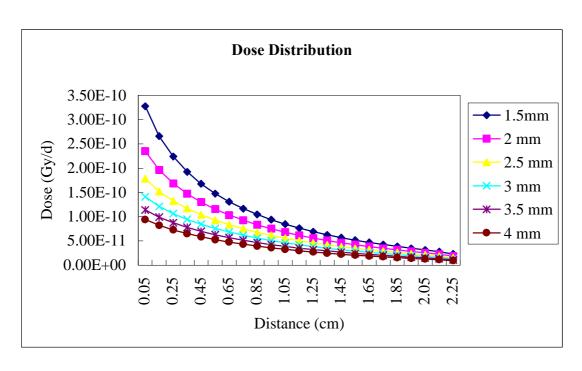
1.

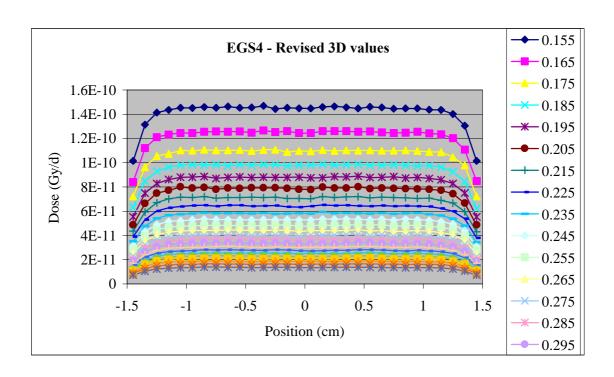
가 (PTCA, percutaneous transluminal coronary angioplasty) 가 6 40~60% 가 58% 17% , Re-188 (E $_{\beta max}$ =2.12 MeV, $T_{\mbox{\tiny 1/2}}\!\!=\!\!16.9$ hr) .5) Re-188 2. Re-188 EGSnrc 가 30 mm 1.5 mm 가 0.5 mm 4 mm 가 $0.03 \, \text{mm}$ 1) 0.1 mm 2.3 mm $1~\mathrm{mm}$ 1 가 3700 MBq/ml 가 Re-188 18 Gy 가 .7) 18**G**y

(1)

 $Time[sec] = \frac{3700 \times 10^{6} [Bq/ml] \times Volume[ml] \times Dose[Gy/d]}{3700 \times 10^{6} [Bq/ml] \times Volume[ml] \times Dose[Gy/d]}$

1. (weight %)


Element	Wire	Catheter	Water	Soft tissue
Н		8.88	11.2	10.45
C	0.1			22.66
N				2.49
О		76.61	88.8	63.52
Na				0.112
Mg				0.013
Si				0.030
P				0.134
Ba		11.78		0.134
S		2.74		0.204
Cl				0.133
K				0.208
Ca				0.024
Cr	19.0			
Fe	71.9			0.005
Ni	9.0			
Zn				0.003
Rb				0.001
Zr				0.001
Density(g/cc)	7.80	1.64	1.00	1.04


3.

2. EGSnrc (Gy/d)

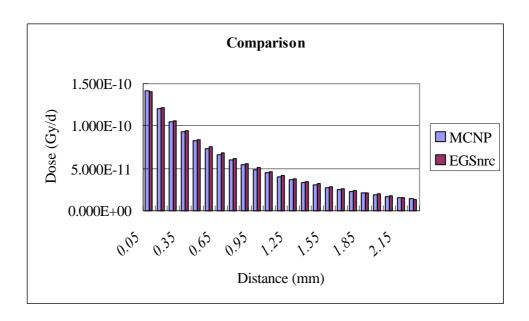
Diameter (mm)						
Distance (mm)	1.5	2.0	2.5	3.0	3.5	4.0
0.05	3.27E-10	2.35E-10	1.78E-10	1.41E-10	1.14E-10	9.39E-11
0.15	2.66E-10	1.96E-10	1.52E-10	1.21E-10	9.88E-11	8.21E-11
0.25	2.24E-10	1.69E-10	1.32E-10	1.06E-10	8.73E-11	7.27E-11
0.35	1.92E-10	1.47E-10	1.17E-10	9.43E-11	7.79E-11	6.49E-11
0.45	1.67E-10	1.30E-10	1.04E-10	8.44E-11	6.97E-11	5.83E-11
0.55	1.47E-10	1.16E-10	9.28E-11	7.57E-11	6.28E-11	5.26E-11
0.65	1.31E-10	1.03E-10	8.34E-11	6.82E-11	5.67E-11	4.76E-11
0.75	1.17E-10	9.26E-11	7.51E-11	6.16E-11	5.14E-11	4.31E-11
0.85	1.04E-10	8.32E-11	6.77E-11	5.57E-11	4.66E-11	3.93E-11
0.95	9.38E-11	7.51E-11	6.13E-11	5.06E-11	4.23E-11	3.57E-11
1.05	8.44E-11	6.79E-11	5.56E-11	4.60E-11	3.85E-11	3.26E-11
1.15	7.61E-11	6.15E-11	5.04E-11	4.19E-11	3.51E-11	2.97E-11
1.25	6.89E-11	5.58E-11	4.60E-11	3.81E-11	3.21E-11	2.71E-11
1.35	6.24E-11	5.08E-11	4.18E-11	3.48E-11	2.92E-11	2.47E-11
1.45	5.66E-11	4.62E-11	3.80E-11	3.18E-11	2.66E-11	2.25E-11
1.55	5.15E-11	4.21E-11	3.46E-11	2.89E-11	2.42E-11	2.05E-11
1.65	4.69E-11	3.83E-11	3.15E-11	2.63E-11	2.21E-11	1.87E-11
1.75	4.25E-11	3.48E-11	2.87E-11	2.40E-11	2.01E-11	1.71E-11
1.85	3.85E-11	3.16E-11	2.61E-11	2.18E-11	1.83E-11	1.55E-11
1.95	3.48E-11	2.85E-11	2.35E-11	1.97E-11	1.65E-11	1.40E-11
2.05	3.13E-11	2.55E-11	2.11E-11	1.76E-11	1.48E-11	1.25E-11
2.15	2.76E-11	2.25E-11	1.86E-11	1.55E-11	1.30E-11	1.11E-11
2.25	2.31E-11	1.89E-11	1.55E-11	1.29E-11	1.09E-11	9.21E-12

2.

3. 3700MBq/ml Re-188 source 18Gy

Diameter	1.5mm	2 mm	2.5 mm	3 mm	3.5 mm	4 mm
Distance(cm)			Time(sec)			
0.05	346	250	203	174	157	144
0.15	426	299	238	203	180	165
0.25	506	348	274	232	204	186
0.35	589	399	310	261	229	208
0.45	676	452	349	291	256	232
0.55	768	508	390	325	284	257
0.65	867	569	434	361	314	284
0.75	971	634	482	400	347	314
0.85	1084	707	534	442	383	344
0.95	1207	782	591	486	421	378
1.05	1341	865	652	535	463	415
1.15	1487	956	718	587	508	455
1.25	1644	1054	788	645	556	498
1.35	1816	1157	866	708	610	547
1.45	2000	1272	952	774	669	600
1.55	2199	1397	1046	850	736	658
1.65	2417	1534	1148	934	806	722

1.75	2667	1690	1261	1027	886	792
1.85	2942	1861	1388	1131	974	873
1.95	3256	2061	1540	1251	1080	967
2.05	3623	2306	1717	1394	1203	1079
2.15	4102	2608	1943	1585	1366	1220
2.25	4911	3117	2338	1905	1642	1468


4.

7\ Michael G. Stabin MCNP4B
.8)
7\ <5%
.3 mm

4. 3 mm EGS MCNP (%)

	MCNP4B	EGSnrc	Relative Error
Diameter	3 mm	3 mm	(%)
Distance(mm)			
0.05	1.423E-10	1.41E-10	-0.93
0.15	1.201E-10	1.21E-10	0.89
0.25	1.049E-10	1.06E-10	1.13
0.35	9.320E-11	9.43E-11	1.21
0.45	8.268E-11	8.44E-11	2.07
0.55	7.374E-11	7.57E-11	2.60
0.65	6.615E-11	6.82E-11	3.00
0.75	5.973E-11	6.16E-11	2.99
0.85	5.432E-11	5.57E-11	2.42
0.95	4.892E-11	5.06E-11	3.35
1.05	4.436E-11	4.60E-11	3.57
1.15	4.045E-11	4.19E-11	3.41
1.25	3.691E-11	3.81E-11	3.26
1.35	3.337E-11	3.48E-11	4.00
1.45	3.030E-11	3.18E-11	4.65
1.55	2.748E-11	2.89E-11	5.02
1.65	2.523E-11	2.63E-11	4.21
1.75	2.287E-11	2.40E-11	4.51
1.85	2.068E-11	2.18E-11	4.93
1.95	1.901E-11	1.97E-11	3.32
2.05	1.702E-11	1.76E-11	3.52
2.15	1.533E-11	1.55E-11	1.20
2.25	1.394E-11	1.29E-11	-7.93

3. 3 mm MCNP EGS

. 3

.

. 3 가

가

Acknowledgement:

5.

1) Almos H I, Reinstein LE, Weinberger J. Dosimetry of a radioactive coronary balloon dilatation catheter for treatment of neointimal hyperplasia. *Med Phys* 1996;23:1783-1788.

가

- 2) Kotzerke J, hanke H, Hoher M. Endovascular brachytherapy for the prevention of restenosis after angioplasty. *Eur J Nucl Med* 2000;27:223-236.
- 3) Janicki C, Duggan DM, Coffey CW, Fischell DR, Fischell TA. Radiation dose from a phosphorous-32 impregnated wire mesh vascular stent. *Med Phys* 1997;24:437-445
- 4) Amols HI, Trichter F, Weinberger J. Intracoronary Radiation for Prevention of Restenosis Dose Perturbations Caused by Stents. *Circulation* 1998;98:2024-2029.
- 5) Knapp F. F. Jr. Rhenium-188-A Generator-Derived Radioisotope for Cancer Therapy. *Cancer Biotherapy & Radiophamaceuticals* 1998; 13:337-349
- 6) Kawarakow I., Rogers D. W. O. The EGSnrc Code System: Monte Carlo Simulation of Electron

and Photon Transport. NRCC Report PIRS-701, 2000.

- 7) Stabin M.G., Konijenberg M., Knapp F.F. Jr. Monte Carlo modeling of radiation dose distributions in intravascular radiation therapy. Med. Phy 2000;27:1086-1092 (ftp.orau.gov/vessel)
- 8) Michael G. Stabin, Vanderbilt University, USA. (Private Contact)