POSRV TEMPEST Code IRWST Pool

IRWST Pool Water Temperature Distribution Analysis During POSRV Actuation Using TEMPEST Code

360-9

ABSTRACT

Following air clearing, essentially pure steam is injected into the IRWST pool. Experiments indicate that the steam jet/water interface at the discharge line exit during this phase is relatively stationary when the local pool temperature is low. Thus, the condensation proceeds in a stable manner, and no significant hydrodynamic loads are experienced. Continued steam blowdown into the pool will increase the local pool temperature. The condensation rates at the turbulent steam/water interface are eventually reduced to levels below those needed to readily condense the discharged steam. At this threshold level, the condensation process may become unstable; for example, steam bubbles may be formed and shed from the pipe exit, and the bubbles oscillate and collapse, giving rise to severe pressure oscillations which are imposed on the pool boundaries. In this paper, the detail IRWST temperature during the postulated POSRV actuation is analyzed using TEMPEST code. From the results that the local pool temperature did not exceed 200 °F, it might be concluded that the steam condensation in KNGR IRWST is stable. Furthermore, during the "bleed" phase of RCS rapid depressurization, the IRWST water may be cooled by the SC or the CS heat exchangers. However, in this stage, the specifications for IRWST cooling are not fixed. Therefore, the impact of parameter changes related to IRWST cooling on local pool temperature.

2001

1.

4,000 MWt				가	
	(IRWST	: In-containment	Refueling W	ater Storage Tanl	k) .
IRWST				(SIS:	Safety
Injection System)	(CSS: Cont	ainment Sprav Sv	stem)	× ×	5
	(000) 0000	TLOI	FW)	(Transie	nt)
POSRV(Pilot Operated Safet	v Relief Valve)	(1201		(11411010)	
robice (rifer operated surer	y Rener Varve)				1
POSRV7	(RCS: Reactor Cools	ont System)		, RCS	7
1051(**)	(Red. Reactor Coold	int System)		faty Danrassurizati	on and
Vont System)	(Fo	ad and Blood Oper	(SDVS. Sa	iety Depressuitzati	on and
IDWST		ed and Bleed Oper	ation	71 SDVS	
INWSI		•		/ 50/5	
IKW51	. PUSKV/f	CT.			
water, , ,	, IKW	51 .			
	71		parger	IKWSI	•
IRWST 7		→ IRWS	ľ		
				. ,	
				•	
				,	
		·	IR	WST	
.[1]		(Stable)	(Unstable	e)	
•	1972		Wurgassen		
	가	,			가
가	• • •	NRC			
Sparger					, 가
	,		Sparger		
	. ,		;	가 "	
200°F	."			IRWST	
	IRWST				
가가 ,	POSE	RV (IOP	OSRV: Inadv	vertent Opening o	f Pilot
Operated Safety Relief Valv	e) TE	EMPEST		IRWST	
				IRWST	
(SCS: Shutdown	Cooling System)				
	IRWST		,		
	IRWST		가 .		
2. IRWST					
IRWST		가	POSRV		
, ,					
RCS		가	POSRV		

•

POSRV			-	가			
가			가				
				U		(Loop Seal)	가
	가						
가		가			. 4		
		(Ring)		(Torus)			
가	가 IRWST				1 가	POSRV	
		가					
		, 가					RCS
RCS	•	,		RCS			
	RCS	(RCGV: Reactor	Coolant	Gas Vent)	, POSRV,	, I S _I	bargers
•		Sparger	2	ABB-A	tom 가		
6inch		I Spa	arger				
			(1	LRR: Load Red	luction Ring)		Sparger
		,	IRV	VST		,	
				IRWST	12	Sparger7	
,	3	Sparger		10ft		Sparger	5ft
		,			5.5f	ť	
IRWS	ST					가	
	, IRWST			,			
	IRWST		4	IRWST			IRWST
	16 ft				11.5ft	653,100 ga	llon
		. IRWST	I	Reg. Guide	1.82	Ċ	lebris screen

1. 가 POSRVs

2

IRWST Sparger

Ø 25

3. IRWST

가.

		TEM	IPEST					TEMPE	ST
	IRWST				Sparger				
	(5	SCRB: Stea	um Co	ndensation	Region Boundary)			(Source)	
(Sink)						SCRB			
Sparger			가						
	Ι	Sparger					•		
3			, I	Sparger			,		
	,				SCR	В			

1) I Sparger

IRWST	가	, I	Sparger	
	POSRV		가 . I Sparge	r
	5 . 7.43ft		Sparger	
3.2 psid				

2)

NEDO-21061					,
	가		2 가	가	8
가 .		Sparger	8		

3) SCRB

SCRB				
			•	

$$\begin{split} \dot{m}_{in} &= \dot{m}_{out} - \dot{m}_{s/w} \\ \dot{m}_{s/w} h_{s/w} + \dot{m}_{in} h_{in} &= \dot{m}_{s/w} h_{s/w} + (\dot{m}_{out} - \dot{m}_{s/w}) h_{in} = \dot{m}_{out} h_{out} \\ , \dot{m}_{in}, h_{in} = \text{Sparger} \qquad 7 \end{split}$$

가

$$\dot{m}_{out}, h_{out} =$$

 $\dot{m}_{s/w}, h_{s/w} =$ Sparger

IRWST

가

,

,

가 . 가

$$\dot{m}_{out} = \dot{m}_{s/w} \frac{h_{s/w} - h_{in}}{h_{out} - h_{in}},$$

$$A_{out} = \mathbf{p}DH, \quad A_{in} = A_{top} + A_{bot}$$

$$6 \qquad \text{Spargers}$$

. TEMPEST

TEMPEST	가				(,	,)	
3	,	,	,						,
				.[2]	TEM	PEST			semi-
implicit,		,		3		,	,		

(Downcommer) , , (), (Plenum)

TEMPEST drag , film . , Newtonian, Prandtl-Kolmogorov 가 k-ɛ viscosity, μ_T . viscosity . dissipation(ϵ) (k) viscosity, μ_T . [3, 4] TEMPEST SCRB $\left(\vec{V} \cdot \vec{n} \right)$ E(N) • +E(N) . SCRB 가 가 -E(N), TEMPEST .

5. IOPOSRV

6. SCRB

. IRWST

	POSRV						TEMPEST		
	IRWST				IRWST		3		
	Sparger 가								
IRWST	TEMPEST					8			
IRWST	,	18 ,	48	3,		17			
				2					
1		0.133768 ft	² POSR	V 1				가	
]	IRWST					
	,		7		7			2,000	
	200 , 600 , 1400	2000		Sparger	,				
		7	, Sparer	,			IRWST		
	2.125 ft, 4.39 ft, 9.6 ft								
	2,000	가 155 °F						,	
Sparger									
				10 °]	F				
		IRWST						•	
	IRWST					,	,		
가	•			7가					
					1		. 1, 2	3	
	Ramshead	IRWST							
	, 4 5			, 6	7				
					8,		9,		
	10					SC	RB		

, 8 Sparger A, B, C, D, E F 11 16 . 11 16 IRWST 200 °F ,

가

1.	IRWST

		[ft]	[ft]	[°]	[gpm]	[inch]
1	Ramshead	3 ~ 4.14	70.03	135	5,000	10
2	Ramshead	3 ~ 4.14	70.03	90	5,000	10
3	Ramshead	3 ~ 4.14	70.03	45	5,000	10
4	Ramshead	0 ~ 1	70.03	135	5,000	10
5	Ramshead	7.8 ~ 9	70.03	135	5,000	10
6	Straight Pipe	3 ~ 4.14	70.03	135	5,000	10
7	Straight Pipe	3 ~ 4.14	70.03	135	5,000	10

7. IOPOSRV IRWST

9.1,4,5

12. B

5.

- [1] U.S.NRC, "Suppression Pool Temperature Limits for BWR Containments", NUREG-0783, Nov. 1981.
- [2] D.S. Trent, L.L. Eyler, "A Computer Program for Three-dimensional Time-dependent Computational Fluid Dynamics and Hydrothermal Analysis", PNL-4348, Battelle, Pacific Northwest Laboratories, Nov. 1997
- [3] Launder, B.E., and D.B. Spalding, 1972, "Mathematical Models of Turbulence", Academic Press, Cambridge, England.
- [4] O. Kwon, "A Velocity and Length Scale Approach to k-ε, Modeling", Journal of Heat Transfer, Vol. 118, Nov. 1996.