

가

Abstract

To properly predict the creep behavior and failure time of RPV lower head in case of severe accident, it is necessary that we should have accurate creep data set of RPV lower head material and evaluate the effect of difference in creep data sets on the RPV lower head analysis. Five available sets of creep database for SA533B1 low alloy steel have been critically evaluated and each sets of raw data and fitted data are examined by applying to RPV lower head analysis using finite element method. When a representative temperature and pressure history from Three Mile Island Vessel Investigation Project is applied with these databases, large discrepancy has been displayed on calculated lower head deformation and this discrepancy has

2001

been attributed to the difference in fitted data. It means that creep deformation is the major factor of RPV deformation and also that the adopting appropriate creep data set is very important. Analysis result shows that thermal expansion is more responsible for the deformation in case of 2 MPa scenario and it is concluded that depressurization would prevent RPV creep deformation in case of severe accident.

가 가 TMI-2 가 가 2. Sandia National Lab. 1988 1993 TMI-2 Vessel Investigation Project(VIP) (Lower Head Failure) 1/5 SA533B1 [1]. SA533B1 [2]. 가 SA533B1 (TMI-2 Vessel Investigation Project, Idaho National Engineering Lab., Sandia National Lab., Seoul National University-(CL)+ (CS)) **Bailey-Norton** 가 fitting , 가 가 3.

1.

, TMI-2 TMI-2 VIP , < 1> , , [3]. , INEL minimum creep rate Idaho National Engineering Lab. , minimum creep rate가 < 2> [4]. 가 Sandia National Lab. , SNL 가 < 3> , SNU Seoul , • National University (CL) (CS) , < 4> < 5> [5].

4.

ABAQUS 2 TMI-2 , 90 5 . 7 minimum creep rate fitting Bailey-Norton (eq. 1) $\dot{e} = As^{m} \exp(-B/T)$ (eq. 1)

,

, TMI-2 VIP , 가 가 TMI-2 VIP TMI-2 , 2MPa, 0MPa

,

5.

가 Bailey-Norton < 6> , < 1> eq.1 가 Bailey-Norton 100MPa membrane stress TMI-2 membrane stress가 100Mpa . , 1000k 가 . X , у minimum creep rate INEL 가 가 minimum creep rate 가 , 가 . < 2> TMI-2 2 10MPa . 가 15MPa 가

TMI-2 3> < , minimum creep rate가 가 INEL 가가 0.09m . SNL TMI-2 VIP 가 0.04m 가 , minimum creep rate가 가 . < 4> TMI-2 . 가 가 0.02m , . , . 2MPa . 2MPa < 5> 2MPa .

6> . 2Mpa < 5> , < 7> 0MPa < 5> 가 < .

2MPa , . 6.

가 Bailey-Norton 가 , .

1. Minimum creep rate . 2. Minimum creep rate가 가 가 3. TMI-2

.

4. 2MPa 5.

.

,

,

TMI-2

.

< 1> TMI-2 VIP

Temperature[K]	Stress[MPa]	mcr[%/h]
	114	0,175
	115	0,382
873	115	0,0799
	155	0,506
	157	0,873
	34,5	0,128
2	40	0,402
	41,6	0,241
973	52,1	0,453
	55	1,07
80	60	1,24
	80	3,68
5-	95,1	8,73
1273	11,5	215
	3.4	0,612
1473	4	0,788
	6	499

< 2> INEL

Temperature[K]	Stress[MPa]	Rupture time[h]	mcr[%/h]	Elongation[%]
	69,7	190,1	0,03075	22,4
900	140,1	11,3	0,3518	24,3
	39,0	8,9	1,5746	72,9
1000	55,6	4,6	2,13639	37,4
1050	13,9	264.4	0,08717	47,7
	26,3	18,9	1,39688	83,0
1150	12,5	547	0,29683	27,9
	26,5	4,1	4,55465	26,4
	8,0	61,2	0,36418	73,3
1250	12,6	2,2	9,41059	43,4
	26,5	0,045	377,674	54,8
1373	3,5	46,9	0,39021	50,4
	7.0	0,65	24,368	78,7

< 3> SNL

Reference	Test Group	T [K]	stress[MPa]	mcr [%/h]
NUREG/CR-5642 b17a	INEL	1373	3,5	0,416
NUREG/CR-5642 b16b	INEL	1250	126	120
NUREG/CR-5642 b16a	INEL	1250	8	0,406
NUREG/CR-5642 b15a	INEL	1150	125	0,347
NUREG/CR-5642 b14b	INEL	1050	26,3	1,63
NUREG/CR-5642 b14a	INEL	1050	13,9	0,113
NUREG/CR-5642 b13a	INEL	1000	39	2,26
NUREG/CR-5642 b12a	INEL	900	69,7	0,0402
NUREG/CR-6187 p125	TMI-2 VIP	1473	3,4	0,612
NUREG/CR-6187 p124	TMI-2 VIP	1473	4	0,788
NUREG/CR-6187 p123	TMI-2 VIP	1473	6	4,99
NUREG/CR-6187 p118	TMI-2 VIP	1273	11,5	2,15
NUREG/CR-6187 p106	TMI-2 VIP	973	34,5	0,128
NUREG/CR-6187 p105	TMI-2 VIP	973	41,6	0,241
NUREG/CR-6187 p104	TMI-2 VIP	973	52,1	0,453
NUREG/CR-6187 p103	TMI-2 VIP	973	80	3,68
NUREG/CR-6187 p102	TMI-2 VIP	973	95,1	8,73
NUREG/CR-6187 p101	TMI-2 VIP	973	40	0,402
NUREG/CR-6187 p100	TMI-2 VIP	973	55	1,07
NUREG/CR-6187 p99	TMI-2 VIP	973	60	1,24
NUREG/CR-6187 p98	TMI-2 VIP	873	114	0,175
NUREG/CR-6187 p97	TMI-2 VIP	873	157	0,873
NUREG/CR-6187 p93	TMI-2 VIP	873	115	0.0799
NUREG/CR-6187 p92	TMI-2 VIP	873	115	0,382
NUREG/CR-6187 p91	TMI-2 VIP	873	155	0,506

< 4> SNU-CL

T[K]	Stress[MPa]	Rupture time[h]	mcr[%/h]	Elongation [%]
873	150	8,433333	1,5732	38,9
	170	3,051667	3,816	35,5
	80	7,373611	2,5164	70
933	100	2,561667	6,984	58
	130	0,567778	24,012	47,6
973	50	8,585834	3,636	110
	60	4,374166	6,336	104
	80	1,071667	21,816	80,2

< 5> SNU-CS

T[K]	Stress[MPa]	Rupture time[h]	mcr[%/h]	Elongation [%]
070	150	16,15278	1,1952	29,9
8/3	170	6,035833	2,8296	27,5
	90	11,65611	2,5776	46,3
933	97	8,995	3,636	47.4
	130	2316111	13,14	45,2
8	50	24,20194	2,0772	60,9
973	70	6,791945	6,948	61
	80	4,207222	10,26	54,5

< 6> 가

Bailey-Norton

Test Group	A	m	В
INEL	2.438E5	3.467	2.839E4
TMI-2 VIP	8.603E4	3.981	3.142E4
SNL	1.391E8	4.021	3.852E4
SNU-CL	5.421E10	4.159	4.329E4
SNU-CS	3.471E8	3.740	3.727E4

< 2> TMI-2

< 1> 100MPa

< 4> TMI-2

< 6> 2MPa

< 7> 0MPa

[1] T. Y. Chu et al., Lower Head Failure Experiments and Analyses, NUREG/CR-5582, Sandia National Laboratories, 1999

[2] K. J. Jeong, D. C. Lim and I. S. Hwang, Creep rupture behavior of a PWR lower head in a core-melt accident, Transaction of ANS, Vol. 77, pp. 273-274, 1997

[3] L. A. Stickler et al., Calculations to Estimate the Margin to Failure in the TMI-2 Vessel, NUREG/CR-6196, 1994

[4] J. L. Rempe et al., Light Water Reactor Lower Head Failure Analysis, NUREG/CR-5642, 1993

,

[5] ,

, , 1999