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Abstract

In order to overcome the ill-posedness of a typical two-fluid model, a hyperbolic equation
system has been developed by introducing an interfacial pressure force in phasic momentum
equations. The interfacial pressure force for the present model is derived by characteristic
analysis under the assumption of isentropic compressible flow condition. The potential
impact of the present model on numerical stability has been examined by Von-Neumann
stability analysis. The obvious improvement in numerical stability has been found when a
semi-implicit time advancement scheme with implicit treatment of the interfacial pressure
force term is used. Numerical experiments using the pilot code have also been shown that the
propagation of void wave perturbation and the water faucet flow are well predicted without
distortion.

1.Introduction

For thermal-hydraulic modeling of two-phase flow systems, six-equation models, which
contain mass, energy and momentum conservation equations for each phase, are commonly
used in codes for nuclear reactor safety analyses. Typical six-equation models assume that the
pressures of liquid, vapor and interface are identical, a so-called single-pressure model, to
eliminate the requirement of an additional closure equation. Unfortunately, typical two-phase
flow models with a single pressure assumption possess complex characteristics that result in
the equation system being ill-posed [1]. As a result, typical six-equation models may cause



the unbounded growth of instabilities. With the aid of lower order frictional term such as
interfacial drag, this system can describe the two-phase flow behavior in coarse mesh by
which short wavelength solution component are not represented. However, as the mesh size is
refined, this system has short wavelength instability due to its non-hyperbolic characteristic.

Trapp has mentioned in his paper that the reasons are mainly considered due to the
assumption of equal pressures between phases and the failure to model the correlations of the
velocity fluctuations in momentum equations. The interfacial momentum transfer terms such
as surface tension, tangential phasic velocity differences, etc. are disappeared in the
momentum equations by this assumption. Many authors have shown that two-fluid model can
achieve hyperbolic system by including the effect of unequal pressure between phases
[1977,Stuhmiller, 1978,Ramshaw, 1985,Ransom, 1986,Holm, 1998, Lee]. Ramshaw and
Trapp proposed sigma equation system by introducing surface tension in the stratified flow at
the slab geometry as phasic pressures constraint. They showed that their equations have real
eigenvalues and therefore, are hyperbolic. Also, They illustrated that their system is stable at
the range of short wavelength by linear stability analysis. Since pressure constraints in
general flow structures are so complicated that this model cannot be applied other geometries
except stratified flow in slab geometry. Stuhmiller introduced the interfacial pressure force.
He studied interfacial pressure force for bubbly flow under incompressible flow condition.
By characteristic analysis, he has found the minimum value of interfacial pressure force,
which makes the system hyperbolic. CATHARE [8] employed this model as its field
equations. However, the assumption used is not applicable for a general two-phase flow
condition. Noticeable model was proposed by Ransom, et all. They noticed that transverse
conservation relation must be included to model separated flow condition. For separated flow,
they introduced the transverse void transport and momentum transport equations and showed
that their system has a suitable eigenvalues set.  Their system was also shown to be stable by
dispersion analysis and numerical comparison with single pressure model. It is thought that
this approach is desirable for realistic two-phase flow calculation. However, conservation
relations of transverse direction for all flow regimes must be established to implement into
codes. Recently, Lee proposed the pressure jump model to account for the pressure difference
between phases based on the notion of surface tension. By characteristic analysis, he showed
that his model has real characteristics. However, this model needs an additional closure
relation for interfacial area intensity, which has not been established yet.

Several authors thought that ill-posedness of a basic two-fluid model are due to lack of
appropriate terms which must be included to describe real physical phenomena in two-phase
flow [1979,Drew, 1980,Arai, 1985, No]. Drew, et al. have searched the proper form of virtual
mass force on the basis of objectivity of interfacial momentum transfer. And No and Kazimi
studied an effect of virtual mass force under incompressible conditions. They showed that the
system of equations has two real eigenvalues by inclusion of virtual mass force with proper
coefficient. Numerical stability is also illustrated by linearized Von-Neumann stability
analysis under the incompressible condition. However, it is not certain that hyperbolic system
is maintained for general situations such as compressible flow condition. Arai studied the
viscous force effect on two-fluid model. By Characteristic analysis, he showed that his
system is hyperbolic. In a strict definition of hyperbolic system, his model is not a hyperbolic
one because characteristic polynomial has quadruple roots of zero. Also if the original model
proposed in his model is used , increase of two additional equations that make his model first



order differential form will increase calculation time which is not desirable in fast running
request of present system code.

A hyperbolic equations system was proposed by introducing a new interfacial pressure
force model into the single-pressure two-fluid equations[17]. The proper value of interfacial
pressure force was derived by characteristic analysis. Because an assumption for
incompressible condition, which used in previous attempts, is not suitable for a real two-
phase flow system, isentropic condition was assumed in this study. Numerical Stability
analysis is performed for the semi-implicit differencing widely used in reactor safety analysis
code in the sense of Von Neumann and also numerical experiment is carried out using pilot
code which is developed using semi-implicit time differencing.

2. Interfacial Pressure Force

The two-phase flow equation system that involves the phasic interfacial pressure force
terms is considered. For isentropic conditions, the expanded mass and momentum equations
can be written as:
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where subscripts ‘g’ and ‘f’ represent the gas and liquid phase, respectively, and ∆pg and ∆pf

represent the interfacial pressure forces. To find out the appropriate value for ∆p, which can
make the equation system hyperbolic, the characteristic analysis is performed. Equations (1)
through (4) can be written in a matrix form as
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For equation (5) to be hyperbolic, the characteristic equation must have four distinct real
roots. The characteristic equation can be reduced to the following form:
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Equation (6) is a forth order polynomial and since it is not easy to directly solve the
characteristics, equation (6) is transformed to a parametric form by assuming the same
interfacial pressure difference, i.e.,. ∆pg=∆pf
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Equations (8) and (9) represent parabola inclined by 45 degrees and hyperbola,
respectively. These two curves must have four intersections in the region of positive X and Y
in order to have four real distinct roots. Figure 1 shows the graphical representation of these
curves. Since we are looking for a small interfacial pressure force which does not distort the
solution of typical two-phase flow equations and enhances the stability, we put an assumption
such that lower portion of hyperbola must intersect with parabola in the region of X∈[ 0, (vg -
vf )

2 ].
For simplicity, we have examined the magnitude of the interfacial pressure differences when



the intersections occur at X=0 and (vg - vf ) 
2. From the sensitivity study, it was found that

most of minimum values occurred at the position of X=(vg - vf ) 
2 while a few can occurred

X=0 for the small void fractions. Therefore, the magnitude of interfacial pressure force was
determined to choose the small one between two values.

The interfacial pressure difference is conservatively determined by choosing the smaller
one such as:
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3.Numerical Stability Analysis

To investigate the numerical stability of the new model, a linearized Von-Neumann
stability analysis was performed. The source terms including frictional drag are not
considered to investigate the influence on stability of present model by excluding the
influence by these terms. It can be shown that inclusion of the phasic energy equations
requires the convective limits, often called Courant limits, for each phase satisfied. Thus, the
phasic energy equations are neglected in this stability analysis under the condition that the
convective limits are obeyed. The stability analysis has been carried out for the semi-implicit
time difference on a staggered spatial mesh, because this difference scheme is widely used in
major thermal-hydraulic codes and has advantages in computational efficiency. The
interfacial pressure difference terms in discretized phasic momentum equations are treated
implicitly to enhance the numerical stability. The resultant phasic mass and momentum
equations can be written as:
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liquid mass:
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vapor momentum:
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liquid momentum:
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Perturbed linear system of equations is obtained by expressing each variable as a
perturbation from a fixed reference state. Thus, any parameter Ψ j

t  is expressed as Ψ Ψ Ψj
t

j
t= + δ .

Then, it is assumed that each perturbation can be expressed as a Fourier component of the
form jikxtt

j eΨδΨδ ≈ . Substituting these perturbation terms into perturbed linear system of

equations yields the linear system represented by the amplitude of the perturbations. In case
that U is a vector containing four amplitudes of the perturbations, 

gδα , 
gvδ , 

fvδ , and pδ ,

the this linear system can be written in the form of ttt BUAU =+∆ . The condition for stability is
that the eigenvalues of the amplification matrix BAG 1−=  must be equal to or less than 1. The
eigenvalues are the roots of the characteristic polynomial equation, 0=− BAλ , that is:
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This fourth order characteristic polynomial is too complicated to determine the spectral
radius analytically. To verify the effect of the present model, the spectral radius contour for
the present model and virtual mass force model together with basic model are depicted in
figures 1 and 2 for the representative conditions of compressibility and incompressibility,
respectively. In the figures 1 and 2, for small and large phasic sonic speeds, which imply
compressible and incompressible conditions, respectively, the spectral radius contours within
the convective limit are shown for the present model. In both cases, the spectral radius of the
new model is less than one. Whereas, the basic model shows only narrow stable region where
the phasic velocity difference is small and in the case of the virtual mass model, the stable
region is broadened compared to the basic model by the inclusion of virtual mass force.
However, unstable regions still appear as the phasic velocity difference becomes larger. In
general, stable region of virtual mass force are broadened with the increase of virtual mass
coefficient from the sensitivity study while large value of this coefficient can distort the
nature of two-fluid model. Consequently, the interfacial pressure force significantly enhances
the numerical stability.   
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Figure 1 Amplification Matrix Spectral Radius Contour for the Compressible Flow
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Figure 3 Amplification Matrix Spectral Radius Contour for the Incompressible Flow
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4. Numerical Experiments

The new hyperbolic model described here was implemented in a prototype code with the
same numerical scheme used in the numerical stability analysis. After differencing for time
and space, the new time values of the phasic velocities can be written as functions of the new
time values of pressure and the void fraction. Substituting them into the mass and energy
equations results in two equations involving the new time values of pressure and void
fractions. For the flow system with N computational volumes, a 2N x 2N system of linear
equations can be obtained for the new time pressure and void fraction. A 2 x 2 block
tridiagonal matrix solver (Anderson, 1984) is used for ( )p pL

n
L
n+ −1  and ( )α αL g

n
L g
n

, ,
+ −1  for each

volume. The new time values of pressures and void fractions are then substituted into the
differenced momentum equations to solve for the new time phasic velocities. The new time



velocities are then used to obtain the new time vapor and liquid energy ug l
n

,
+1 , u f l

n
,
+1 .

To examine the stability and accuracy of present model, a wave perturbation and Faucet
problems have been simulated and the results are compared with those for the basic two fluid
model with virtual mass force in their momentum equations.  As in the case of numerical
stability analysis, frictional drag was not included. A horizontal pipe of 11m is selected as test
geometry and discretized into 96 volumes. Since we are mainly concerned with the short
wavelength instability that is critical problem for non-hyperbolic system, pipe was finely
discretized to investigate this instability.

4.1 Wave Perturbation Problem

It is well known that if the system of equations is hyperbolic and a consistent numerical
scheme is adapted, a perturbation must not be amplified or be damped along with its
propagation. The simulations were carried out for two kinds of waves, having different
wavelengths. Pipe is initially filled with saturated liquid and vapor with constant void fraction
of 0.5. The initial liquid and vapor velocities are 1 m/s and 0.1m/s respectively. As shown in
Figures 3 through 6, the perturbed void and pressure waves are damped properly in the
present model as the wave propagates. On the contrary, the basic model shows unstable wave
propagation. Especially for the void perturbation, the wave is amplified continuously and is
not damped out. For the pressure wave perturbation, wave is propagated with the phasic sonic
speed and is continuously damped for the present model. In the basic model, the pressure
perturbation is damped as in the new model. However, for long wave perturbation, the
pressure wave is not propagated well as in the present model. It is thought that these
behaviors of the basic model are due to partially elliptic characteristic of this model. From
these results, it is obvious that the new model with the interfacial pressure difference term is
more stable.
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5.2Water Faucet Problem

Since the present model was developed to enhance the stability of two-fluid model, the side
effects that make the original features of two-fluid model distorted may occur. In this
numerical experiment, the accuracy of the present model is tested. It is difficult to choose a
benchmark problem since most two-phase flow problems do not have an analytic solution.
Ransom has developed a two-phase benchmark problem, which has an analytic solution [12].
In his problem, the only driving force is gravity and frictional drags are ignored. The
simulated pipe is a vertical channel with 96 volumes and is about 11m high. At the start of the
simulation, water falls into the pipe with an initial velocity of 10m/s at the top of entrance.
The water, then, is accelerated by gravity. As shown in figure 7, the result of the new model
has good agreement with the exact solution. Broadening of the void fraction profile at the
front is thought to be due to numerical diffusion. The result of virtual mass force model was
distorted compared with exact solution. In this test, virtual mass force in basic model is used
same as RELAP5/MOD3. In Benchmark test for RELAP5/MOD2[], they have eliminated
virtual mass force terms which is not suitable for non-dispersed flow condition such as Faucet
problem. Since the virtual mass force are mainly concerned with dispersed flow such as
bubbly flow or droplet flow[], the results without virtual mass force are more reasonable.
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Figure 7 The Water Faucet Problem (a) New Model, (b) Basic Model

5. Concluding Remarks

In this paper, the numerical stability of Interfacial pressure force model was performed
using a linearized Von-Neumann stability analysis for semi-implicit discretization scheme. It
was shown that this model has smaller spectral radius than basic and virtual mass models
under same physical condition. Also, in order to investigate the stability in the numerical
calculation of this model, a pilot code was developed and applied for simulating wave



perturbation and faucet problems. In perturbation problem, perturbation wave in the present
model is continuously damped out and finally disappears while other models result in
numerical instabilities. In addition, in faucet test, this model showed good agreement with the
exact solutions. Consequently, we can conclude that the present model has a more improved
simulation capability than the basic two-fluid model and can be easily implemented in current
nuclear safety analysis codes.

NOMENCLATURE

A flow area

vC virtual mass coefficient

c sonic speed
FIF liquid interfacial friction coefficient
FIG vapor interfacial friction coefficient
FWF liquid wall friction coefficient
FWG vapor wall friction coefficient
k wave number
p pressure
v velocity
α void fraction

x∆ volume length
t∆ time step size

Γ vapor generation rate
ρ mass density
Subscripts
f  liquid phase
g  vapor phase
i  interface
m  mixture

Superscripts

n  time step advancement
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