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Abstract

The lower head of the reactor pressure vessel (RPV) can be subjected to significant thermal and
pressure loads in the event of a core meltdown accident. For the detailed understanding of its behavior, a
real scale experiment of RPV creep with prototype material, namely low alloy steel, is in demand. But it
is highly difficult to perform because of very high heat flux and pressure. If we can replace the real test of
the prototype material using dimensional analysis with a model material that possesses constitutive
similarity but has low melting temperature and mechanical strength, the experiment can be significantly
simplified and less expensive.

From the mathematical structure of the constitutive equation for classical viscoplasticity, a simple
rheological model was derived. The model explains the time dependent mechanical behavior of RPV
creep. The creep equation was nondimensionalized using the dimensionless group of variables. By
adopting lead (Pb) as a model material, heat flux and pressure conditions of the model experiment was
defined.

Finite element analyses showed adequate agreement between prototype and model systems for the
time dependent deformation behavior on nondimensional coordinates such that this novel approach can
be used under the scaled temperature/pressure conditions to represent creep deformation behavior of
prototype RPV.

1. Introduction

In the event of a core meltdown accident, the possibility exists that the lower head will fail and release
large amounts of the molten core material to the containment floor [1]. The mode, timing, and size of
lower head failure are of prime importance in the assessment of core melt accidents because they define
the initial conditions for ex-vessel events such as core/basemat interactions, fuel/coolant interactions, and
direct containment heating. On the other hand, some studies indicate that the deformation of the lower
head wall may lead to the inner wall gap cooling conductive to in-vessel core retention without external
cooling [2,3]. However the current understanding is that in-vessel retention approach by external cooling
will be successful only when the lower head deformation can be conservatively limited.

There are two possible failure mechanisms for the RPV lower head under severe accident. If the RCS
pressure is negligible, the failure mechanism will be simple collapse by lower head melting. Although
most reactors adopt safety depressurization systems for use in severe accidents, it is reasonable to assume
there will be certain level of residual pressure even under the depressurization conditions. In those cases,
the lower head failure mechanism will be creep rupture. Creep deformation of the lower head vessel will
eventually lead to creep rupture, as is illustrated in the Lower Head Failure (LHF) experiments at Sandia



National Laboratories [4]. From the LHF experiments and the in-vessel retention point of view, it can be
concluded that creep deformation of the vessel is of prime importance in that

a) lower head creep can lead to global vessel rupture,
b) creep deformation of the lower head can lead to premature failure of penetration nozzles, and
c) creep deformation affects the ex-vessel and in-vessel processes by interfering with other
surrounding media and structures.

Real scale experiment of RPV creep with prototype material, namely low alloy steel, is in demand to
understand its behavior but highly difficult to perform because such experiment requires fairly high heat
flux and higher pressure facilities. In addition, in order to perform an ex-vessel cooling experiment it is
necessary to set up a protection system against creep rupture and/or steam explosion, etc. The experiment
at a full scale becomes highly expensive and is clearly impractical if not impossible. If we can replace the
real test of the prototype material using the dimensional analysis with a model material that possesses
constitutive similarity but has low melting temperature and mechanical strength, the experiment can be
significantly simplified and less expensive. The purpose of this paper is to establish a dimensional
analysis for creep behavior of a reactor-scale vessel to bring in a design procedure for a small-scale model
experiment of different material directly relevant to the prototype reactor. The key features of the problem
can be seen with the help of Fig. 1, depicting the reactor pressure vessel with its boundary conditions of
environmental temperature ∞T  and heat transfer coefficient to the environment h, the values of which
are listed in Table 1. We would employ the term “dissimilar material modeling” in a special context in
this study. The term will connote modeling of prototype structures with models that are made of materials
differing from those in the prototype, but possessing constitutive similarity [5].

This paper consists of four technical sections. Two sections (Section 3 and Section 4) address the
mathematical modeling and nondimensionalization procedures, respectively. Section 5 addresses the
defining scheme for the loading conditions of the model experiment and Section 6 is devoted to the
analysis results and discussion. The overall aim of these sections and their interrelations are explained as
a part of the overall approach and methodology in Section 2. The paper comes to an end with the
conclusions in Section 7.

2. Problem Definition and Overall Approach

Two different systems of RPV lower head with different size and material of constituent have been
considered. For the derivations of scaling rule, we assume one-dimensional spherical symmetry [6]. The
prototype system is assumed as a hemispherical shell of low alloy steel with inner radius of 2.371 m and
outer radius of 2.536 m, after the dimensions for the case of Korean Next Generation Reactor (KNGR).
The scaled model system is assumed to be made of “model material” with the scale of 1/34 the prototype
systems. All dimensions including material parameters with their values for both the prototype and the
model systems used in the calculations are listed in Table 1.

Physical parameters that are less important are eliminated from our dimensional analysis after having
practiced in selecting important physical parameters [7]. Mathematical relationships were found using the
variables that govern creep behavior. In designing scale experiments, it is very important to select the
nondimensional parameters correctly. There should be as few parameters as possible, while they still can
reflect fundamental effects in the most convenient way.

A basic assumption in the creep formulation for the system is that the total strain can be expressed as
the sum of elastic and creep strains. As the model, a hemispherical shell of 15 cm O.D. and 5 mm wall
made of lead is adopted. In this study, to be used as preliminary design information before a test, heat flux
and pressure conditions for the model system are calculated using a dimensional analysis of the creep
equation and mathematical model as a guide.

As a demonstration of correctness of the scaling procedure, finite element analysis was performed for
both prototype and model conditions. In the analysis, thermal expansion is additionally considered which
is not directly included as a scaling parameter but has an effect to deformation, when creep strain is not
dominant, especially in a prototype system where temperature increase is much larger.

3. Mathematical Modeling



In this section we begin with the mathematical structure of the constitutive equations for classical
viscoplasticity by a simple rheological model [8]. Our objective is to reinstate in the simplest possible
context the formulation of the general viscoplastic models. It consists of a spring with the elastic constant
of E, and a dashpot with viscoplasticity η , in series as shown in Fig. 2. The model explains the time
dependent deformation behavior of RPV in a circumferential direction.

Under the action of an overall stress σ  there will be an overall strain ε  in the system which is given
by

21 ε+ε=ε (1)

where 1ε  and 2ε  are the strains in the spring and dashpot, respectively.

Since the elements are in series the stress is obviously the same, as follows

σ=σ=σ 21 (2)

Equations (1) and (2) can be written therefore as for the spring and dashpot respectively, by the linear
elastic behavior given by Hooke’s law and the linear viscous behavior given by Newton’s law [8].
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In this study the viscosity η  is assumed to be a function of stress σ , temperature T, and, time t, namely
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In case of creep of our problem the stress can be thought as held almost constant at ( )00 Eε=σ≅σ  and

so 0dt/d ≅σ  where the definition of 0σ  and 0ε  will be described in next section. Equation (4)

therefore be simply written as by introducing the creep function, )t,T,(f σ
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Now the total strain at time t, is denoted by the single equation

dt)t,T,(f
t

0
0 ∫ σ+ε=ε (6)

The total strain is composed of two parts as shown in Eq. (6). To obtain the similarity of total strain, our
approach is to choose both 0ε  and ( )t,T,f σ  as major scaling parameters.

4. Nondimensionalization of Creep Equation

To simplify creep equation, the Bailey-Norton-type equation with Arrehnius-type temperature



dependency for the secondary creep is defined as follows [9]
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where T and ,R,Q,m,A,ε&  are creep strain rate, Bailey-Norton coefficient, Bailey-Norton exponent,
thermal activation energy, the universal gas constant, and temperature, respectively. These creep constants
are listed in Table 2.

To nondimensionalize Eq. (7), we select the following parameters and each parameter is defined as
dimensionless strain λ , dimensionless stress Σ , dimensionless temperature Θ , and dimensionless time
τ , respectively.
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where 0T  is the reference temperature at which both model and prototype materials have the same

dimensionless time measure and 0σ  is a membrane stress and 0ε  is the corresponding elastic strain
respectively, as defined below:
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Substitution of Eq. (8) into Eq. (7) yields the following dimensionless creep equation
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The procedure for the dimensional analysis is as follows. First, we determine the reference membrane
stress and corresponding reference elastic strain of the prototype material using Eq. (9). Then by equating
the elastic strain of the model system with prototype system, the reference stress and pressure of the
model system is determined. Equating the dimensionless time τ , obtain the reference temperature 0T . It
is noted that if two bodies of like geometry have the same stress exponent m , dimensionless stress Σ ,
and dimensionless temperature Θ , they reach the same dimensionless creep strain λ , at the
dimensionless time τ . However, the stress exponent m , is a material property and generally differs
from material to material. On the other hand, it is derivable to set the reference stress 0σ , as the
membrane stress, such that the value of dimensionless stress Σ , becomes about unity, making
dimensionless strain λ , not sensitive to the stress exponent m.

5. Defining Loading Conditions

For the prototype condition, internal pressure of 2 MPa is assumed as a conservative value of safety
depressurization system and heat flux of 418 kW/m2 is prescribed as a typical value in case of severe
accident of KNGR [7]. The temperature of the environment is assumed to be 418 K and a heat transfer
coefficient to the environment of 30 W/m2K is chosen [10]. If we are to use the strain as the primary
scaling parameter, elastic strains of both prototype and model are to be equated. By equating the elastic
strain of the model with that of the prototype, internal pressure of the model is uniquely determined by
the help of Eq. (9) and using the elastic modulus value of Table 1.

The next step is to define the heat flux of the model experiment. According to the high heat flux of the
prototype condition, there will be large temperature differentials across the vessel. Before scale the heat



flux for the model system, it must be noted that what we are scaling is not the temperature differentials
but the creep deformation. The model experiment designed here is a small-scale experiment and
temperature differentials across the vessel are almost negligible. So the most representing single
temperature must be picked from the temperature differentials across the vessel to be scaled at the model
system.

If it is assumed either that radial stress is almost little responsible for the creep or that radial stress is
negligible compared to the circumferential stress, then the stress of the circumferential direction
integrated across the vessel can be set as equivalent to value of the membrane stress multiplied with its
corresponding area.
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The creep strain rate of various temperatures of Eq. (7) can be approximated as that of equivalent
temperature and membrane stress, thus
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These assumptions and derivations have been described in full in reference [7], where the complete

formation for the cases is given. Finally, rearranging the above Eqs. (11-12), effective temperature T
~

 is
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Fig. 2 shows the temperature histories across the vessel as function of time with their effective
temperature calculated. Effective temperature then was used to calculate the dimensionless temperature as
function of dimensionless time as depicted in Fig. 3 using Eq. (8).

Nondimensionalizing the time measure, the time span for the model system can be arbitrarily chosen
and, for this study, a time scale of 20 times to the prototype value is chosen, which is a compromise
between instrumental and practical purposes of our experiment interested [11]. By the definition of the
dimensionless temperature and using the material properties of the model, the effective temperature of the
model experiment can be calculated. From practical point of view, temperature below 280 K is modified
to 280 K as in Fig. 5 because temperature below 280 K would negligibly contribute to the creep while it
is convenient to set the initial temperature as that of environment.

For the model condition, the temperature of the environment, 280 K, and a heat transfer coefficient to
the environment of 15 W/m2K are chosen. It is noted that the wall of the model lower head is thin enough
to approximate the wall temperature as a lumped value. In this case, the time dependent heat flux can be
approximated as the sum of temperature rising term and outgoing wall heat flux as in the Eq. (14) [12].
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The heat flux calculated for the model experiment of Fig. 6 shows linearly increasing behavior to about 6
kW/m2.



6. Results and Discussion

In order to demonstrate in a simple manner that dimensional analyses actually works and that tests on a
model will predict prototype results, finite element analyses for both prototype and model systems were
conducted. The RPV vessel, as seen in Fig. 1, consisted of hemispherical shell which expand freely as
being heated and pressurized inside. Both systems were modeled using Eq. (7) and ABAQUS 5.8 with
two-dimensional axisymmetric elements [13]. The lower head was modeled with 90 elements (one for
each angular degree) and five radial elements, to include a total of 450 elements. In ABAQUS, the
computational elements were defined as a “CAX8R,” which are eight noded quadrilateral elements with
reduced integration points. This nodalization is expected to give accurate resolution to the stress gradients
expected in the analyses [7].

The computational model simulated the boundary condition by restraining the equatorial nodes so that
they could not move vertically but could slide freely in radial direction. A pressure boundary condition
was established on the inside surface elements. A separate heat flux was specified for the inside elements
of prototype and model systems, respectively. Tensile property inputs of Table 1 to ABAQUS are used.
The creep model was specified as a user subroutine that returns the creep strain rate as a function of the
instantaneous temperature and stress states. It is assumed that the von Mises yield criterion and the
Prandtl-Reuss relations, originally derived for plasticity, are valid during creep [14].

Vertical displacement of the bottom apex is often the principal measurement in experiments against
which model predictions are compared. The vertical displacements occur in two stages: the first is
characterized by a small and linear displacement rate and the second is characterized by a large and
accelerating displacement rate [7]. The period of linear displacement rate is associated mainly with
thermal expansion as the vessel is heated up. The second stage is characterized by large and accelerating
deformation rate due to creep and is of greater interest in severe accident assessments. Defining the
dimensionless displacement X, as the vertical displacement of the vessel outer wall divided by its outer
radius b, Fig. 7 shows the deformation behavior of prototype and model systems on dimensionless
coordinates. Both dimensionless displacements of prototype and model systems predicted well-matched
deformation behaviors. Discrepancy at the first stage is due to the larger thermal expansion of the
prototype system that is not directly considered as a scaling parameter. That is also noted from the creep
strains of Fig. 8 for both prototype and model systems where the two circumferential strains are well
collapsed.

7. Conclusions

Dimensional analysis was performed via nondimensionalizing the creep related variables. Dissimilar
material modeling is to perform RPV creep deformation experiment in a relatively low pressure and heat
flux conditions using a model material. Using the lead (Pb) as the model material, typical conditions of
pressure and heat flux of the actual lower head are reduced to:

- pressure: from 2 MPa to 0.187 MPa
- heat flux: from 418 kW/m2 to under about 6 kW/m2

Verifications using FEM showed that both nondimensionalized deformation behaviors of prototype and
model vessels showed well matched behaviors. As for the future development, angular dependent heat
flux may be incorporated into the analysis.
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Table 1. Parameters and their values of prototype and model systems

Parameters Prototype Model
Density, Cp (kg/m3)
Specific heat, k (J/kgK)
Conductivity, ρ (W/mK)

Elastic modulus, E (GPa)
Thermal expansion coefficient, α (m/m)

Heat transfer coefficient, h (W/m2K)
Outer temperature, ∞T  (K)

Outside radius, b (m)
Inside radius, a (m)

7,700a

800a

33a

150a

15E-6a

30b

313b

2.536c

2.371c

11,340d

129d

33d

14d

31.3E-6d

15e

280e

0.075f

0.070f

a: Reference [15]
b: Reference [10]
c: Typical value for the lower head geometry of KNGR
d: Reference [16]
e: Room temperature condition for this study
f: 1/34 scale to the prototype

Table 2. Creep constants of prototype and model systems

Creep constants Prototype [9] Model [17]
A (h-1MPa-m)
m (N/A)
Q/R (K)

3.47E8
3.74
37,269

2.30E3
2.26
6,202



Fig. 1. Schematic of RPV geometry with heat flux q, pressure P, and outside heat transfer boundary
conditions ∞T  and h

Fig. 2. One dimensional elastic-creep rheology model
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Fig. 3. Temperatures across the vessel and their effective temperature (heat flux, q = 418 kW/m2)



0.00 0.01 0.02 0.03 0.04 0.05
-20

-15

-10

-5

0

5

10

15

20

25

 

 

D
im

en
si

on
le

ss
 te

m
pe

ra
tu

re
, Θ

Dimensionless time, τ

Fig. 4. Dimensionless temperature vs. dimensionless time (heat flux, q = 418 kW/m2)
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Fig. 5. Temperature of the model system (calculated: symbols, modified: solid line)
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Fig. 6. Calculated heat flux of the model system
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Fig. 7. Elastic-thermal-creep numerical analysis results of dimensionless vertical displacements vs.
dimensionless time (prototype: solid line, model: dashed line)
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Fig. 8. Elastic-thermal-creep numerical analysis results of dimensionless circumferential creep
strains vs. dimensionless time (prototype: solid line, model: dashed line)
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