LAVA	가	가

150

Evaluations of the Coolability in the LAVA Experiments and Large Advanced Light Water Reactors(ALWR) using Gap Cooling Model

Abstract

The evaluations of the in-vessel coolability using gap cooling model based on counter current flow limits(CCFL) have been performed for the LAVA experiments and large ALWR. It could be inferred from the analyses for the LAVA experiments that the vessel could effectively cooldown via heat removal throug the gap cooling even if 2mm thick gap should form between the interface of the melt and the vessel in the 30 kg Al_2O_3 melt tests. In the case of large melt mass of 70 kg Al_2O_3 melt, however, the infinite possibility of heat removal through a small size gap such as 1 to 2 mm thick couldn't be guaranteed due to the difficulties of water ingression through the gap into the lower head vessel bottom induced by the CCFL. The sensitivity analyses for ALWR using gap cooling model indicated that the heat removal through gap cooling was capable of ensuring the RPV integrity as much as 42 % of the total core mass was relocated into the lower plenum significantly depending on the sensible heat loss and the downward heat split fraction of corium and also the gap thickness.

1.

1979 TMI-2 가 (pool) 가 . TMI-2 [1,2,3]. 가 가 · 가가 SONATA-IV(Simulation of Naturally Arrested Thermal Attack In Vessel)[4,5] 1 LAVA(Lower-plenum Arrested Vessel Attack) [6,7] CHFG (Critical Heat Flux in Gap) [8] . LAVA Al_2O_3/Fe (Al_2O_3) CHFG mm . 가 . LAVA 1 ~ 3 mm CHFG . (CCFL : Counter Current Flow Limit) . . CHFG LAVA 가 LAVA • 가 • 2.

CHFG

•

(CCFL : Counter

Current Flow Limit)

 (j_l)

$$\frac{1}{2^{2}} \qquad \frac{2^{2}}{2^{2}} \qquad \frac{2^{2}}{2^{2}$$

$$A_{d} = 2pR^{2}(1-\cos q) - (7)$$

$$V = \frac{1}{3}pH^{2}(3R-H) - (8)$$

$$(4)$$

$$2^{1} + CHFG$$

$$LAVA APR-1400$$

$$7^{1} + .$$
3. LAVA 7^{1} 7^{1} - .

$$LAVA APR-1400$$

$$7^{1} + .$$
3. LAVA 7^{1} 7^{1} - .

$$20 - 7^{1} + .LAVA$$

$$2 - .LAVA$$

$$20 - 7^{1} + .LAVA$$

$$2 - .LAVA$$

$$2 - .LAVA$$

$$3 - ... -$$

(10) [10]. LAVA

4.

decay heat (sensible heat) (12) . . $Q(kW) = F_{LHV} \left[Q_{decay} \cdot V_P + fM_P c_p \frac{\Delta T}{\Delta t} \right]$ 가 가 decay heat MAAP4 1 large LOCA (0.5 . ft²) [11]. (F_{LHV}) (**f**) • mini-ACOPO [12] 60 % COPO [10] 15 % FAI [13] 30 % 50 % 100 % 1 가 K/s . LAVA CCFL • 2 3 4 6 6 60 % 가 50 % 가 3 mm 가 . 15 % 50 % 가 3 mm 42 %가 • 5. CCFL LAVA 가 가 . LAVA 30 kg Al_2O_3

 Al_2O_3

2 mm

가

- 1. J. R. Wolf et. al., TMI 2 Vessel Investigation Project Integration Report, NUREG/CR 6197 (EGG 2734), 1994
- 2. L.A. Stickler, et al., Calculations to Estimate the Margin to Failure in the TMI-2 Vessel, NUREG/CR-6196(EGG 2733), 1994
- 3. J.L. Rempe, et al., INEL Phase I Debris Cooling Tests and Analyses, INEL-95/0242, 1995
- S. B. Kim et.al., Recent Progress in SONATA-IV Project, OECD/NEA CSNI PWG-2, The Third Mtg. Of TG-DCC, Rockville, MD, USA, May 9-10, 1997
- 5. K. Y. Suh et al., SONATA-IV Simulation Of Naturally Arrested Thermal Attack In-Vessel, Proc. Int. Conf. on PSA Methodology and Applications, pp. 453-460, Seoul, November 26-30, 1995
- K. H. Kang et al., Experimental Investigations on In-Vessel Debris Coolability through Inhererent Cooling Mechanisms, OECD/CSNI Workshop on In-Vessel Core Debris Retention and Coolability, Garching, Germany, March 3-6, 1998
- S. B. Kim et al., Major Results of In-Vessel Corium Cooling in the SONATA-IV Experimental Program, RASPLAV Seminar-2000, Munich, Germany, 14-15 Nov., 2000
- 8. J. H. Jeong et al., Experimental Study on CHF in a Hemispherical Narrow Gap, OECD/CSNI Workshop on

In-Vessel Core Debris Retention and Coolability, Garching, Germany, March 3-6, 1998

9.

- , 2000 5 26 27
- Yu Maruyama, et al., Experimental Study on In-Vessel Debris Coolability in ALPHA Program, Nuclear Engineering and Design 187(1999), 241 - 254

, 2000

- 11. J. W. Park et al., An Investigation of Thermal Margin for External Reactor Vessel Cooling(ERVC) in Large Advanced Light Water Reactors(ALWR), Proceedings of the Korean Nuclear Society Spring Meeting, Kwangju, Korea, May 1997
- 12. T. G. Theofanous et al., In-Vessel Coolability and Retention of a Core Melt, DOE/!D-10460, 1995
- R.H. Henry, et al., An Experimental Investigation of Possible In-Vessel Cooling Mechanisms, CSARP Meeting, Bethesda, Maryland, May 5-8, 1997

Decay Heat	26 MW
Melt Mass (M_{pool})	159.87 ton
Decay Heat per Unit Volume (Q)	$1.65 \text{ MW}/\text{ m}^3$
Radius of Lower Head Vessel (<i>R</i>)	2.37 m
Cooling Rate of Melt ($\Delta T / \Delta t$)	1 K/sec
Density (r)	8450 kg/m ³
Conductivity (k)	5.3 W/m K
Specific Heat (<i>C</i> _p)	510 J/kg K
Vol. Thermal Expansion Coefficient (\boldsymbol{b})	1.05 x 10 ⁻⁴ 1/K
Thermal Diffusivity (a)	1.23 x 10 ⁻⁶ m ² /sec
Viscosity (m)	5.3 x 10 ⁻³ Pa·s
Kinematic Viscosity (n)	6.27 x 10 ⁻⁷ m ² /sec
Composition	90 % UO ₂ + 10 % ZrO ₂

1.

,

,

Ratio	Mass	Volume	Height(m) & A	Radius	S_{dn}	$A_{_{gap}}$	A_{gap}	A_{gap}
(%)	(kg)	(m ³)	magne(m) er q	(m)	(m²)	(1mm)	(2mm)	(3mm)
5 %	7993.5	0.946	0.366, 32.27	1.265	5.451	0.00795	0.01588	0.02382
10 %	15987.0	1.892	0.524, 38.84	1.486	7.803	0.00933	0.01866	0.02798
15 %	23980.5	2.838	0.648, 43.4	1.628	9.6497	0.01023	0.02045	0.03066
20 %	31974.0	3.784	0.754, 47.01	1.734	11.2274	0.01089	0.02178	0.03266
25 %	39967.5	4.730	0.850, 50.11	1.8184	12.6587	0.01142	0.02284	0.03425
30 %	47961.0	5.676	0.937, 52.8	1.8878	13.9545	0.01186	0.02371	0.03556
35 %	55954.5	6.622	1.019, 55.25	1.9473	15.1757	0.01223	0.02446	0.03668
40 %	63948.0	7.568	1.096, 57.48	1.9984	16.3192	0.01255	0.02510	0.03764
45 %	71941.5	8.514	1.170, 59.58	2.0437	17.4224	0.01284	0.02567	0.03849
50 %	79935.0	9.460	1.241, 61.55	2.0838	18.4792	0.01309	0.02617	0.03925
55 %	87928.5	10.406	1.308, 63.38	2.1188	19.4787	0.01331	0.02661	0.03991
60 %	95922.0	11.352	1.375, 65.18	2.1511	20.4775	0.01351	0.02702	0.04052
65 %	103915.5	12.298	1.439, 66.87	2.1795	21.4287	0.01369	0.02738	0.04105
70 %	111909.0	13.244	1.502, 68.52	2.2054	22.3689	0.01385	0.02770	0.04154
75 %	119902.5	14.190	1.563, 70.09	2.2283	23.2735	0.01399	0.02799	0.04197
80 %	127896.0	15.136	1.623, 71.63	2.2492	24.1697	0.01413	0.02825	0.04237
85 %	135889.5	16.082	1.682, 73.12	2.2679	25.0443	0.01425	0.02849	0.04272
90 %	143883.0	17.028	1.740, 74.58	2.2847	25.9081	0.01435	0.02870	0.04304
95 %	151876.5	17.974	1.797, 76.0	2.2996	26.7541	0.01445	0.02889	0.04332
100 %	159870.0	18.920	1.854, 77.42	2.3131	27.6053	0.01453	0.02905	0.04357

Melt Ratio	$D_h(m)$		$j_{g,\max}(m/\sec)$			$Q_{\max}(kW)$			
(70)	1mm	2mm	3mm	1mm	2mm	3mm	1mm	2mm	3mm
5 %	7.9451	7.9419	7.9388	4.8552	4.8542	4.8533	732.7	1463.3	2194.5
10 %	9.3337	9.3305	9.3274	5.2624	5.2615	5.2607	932.0	1863.7	2794.1
15 %	10.2259	10.2227	10.2196	5.5082	5.5073	5.5065	1069.7	2137.9	3204.8
20 %	10.8919	10.8888	10.8856	5.6847	5.6839	5.6831	1175.2	2350.0	3523.4
25 %	11.4222	11.4191	11.4159	5.8215	5.8207	5.8199	1262.0	2523.6	3783.8
30 %	11.8583	11.8551	11.8520	5.9316	5.9308	5.9300	1335.4	2669.3	4002.9
35 %	12.2321	12.2290	12.2258	6.0243	6.0236	6.0228	1398.6	2796.9	4193.6
40 %	12.5532	12.5500	12.5469	6.1029	6.1021	6.1014	1453.9	2907.4	4359.5
45 %	12.8378	12.8347	12.8315	6.1717	6.1710	6.1702	1504.3	3007.0	4508.2
50 %	13.0898	13.0866	13.0835	6.2320	6.2312	6.2305	1548.5	3095.5	4642.2
55 %	13.3097	13.3065	13.3034	6.2841	6.2833	6.2826	1587.7	3173.9	4759.7
60 %	13.5126	13.5095	13.5064	6.3318	6.3311	6.3304	1623.8	3247.3	4869.2
65 %	13.6911	13.6879	13.6848	6.3735	6.3728	6.3720	1656.3	3312.2	4965.3
70 %	13.8538	13.8507	13.8475	6.4113	6.4105	6.4098	1685.6	3370.8	5054.4
75 %	13.9977	13.9945	13.9914	6.4445	6.4437	6.4430	1711.5	3423.7	5133.1
80 %	14.219	14.1259	14.1227	6.4746	6.4739	6.4732	1736.7	3471.7	5206.4
85 %	14.2465	14.2434	14.2402	6.5015	6.5008	6.5001	1758.7	3515.7	5271.2
90 %	14.3521	14.3489	14.3458	6.5255	6.5248	6.5241	1777.6	3554.7	5330.3
95 %	14.4457	14.4425	14.4394	6.5468	6.5461	6.5454	1795.8	3589.9	5382.5
100 %	14.5305	14.5274	14.5242	6.5660	6.5653	6.5646	1811.0	3620.4	5429.4

Mass	Α	В	С	D
Ratio (%)	F _{LHV} :60%, f : 100 %	F _{LHV} :60%, f : 50 %	F _{LHV} :30%, f : 50 %	F _{LHV} :15%, f : 50 %
5 %	3382.6	2159.6	1079.8	539.9
10 %	6765.1	4319.1	2159.6	1079.8
15 %	10147.7	6478.6	3239.4	1619.7
20 %	13530.2	8638.2	4319.2	2159.6
25 %	16912.8	10797.7	5398.8	2699.4
30 %	20295.3	12957.3	6478.6	3239.3
35 %	23677.9	15116.8	7558.4	3779.2
40 %	27060.4	17276.4	8638.2	4319.1
45 %	30443.0	19435.9	9718.0	4859.0
50 %	33825.5	21595.5	10797.8	5398.9
55 %	37208.1	23755.0	11877.6	5938.8
60 %	40590.6	25914.6	12957.2	6478.6
65 %	43973.2	28074.1	14037.0	7018.5
70 %	47355.7	30233.6	15116.8	7558.4
75 %	50738.3	32393.2	16196.6	8098.3
80 %	54120.8	34552.7	17276.4	8638.2
85 %	57503.4	36712.3	18356.2	9178.1
90 %	60885.9	38871.8	19436.0	9718.0
95 %	64268.5	41031.4	20515.6	10257.8
100 %	67651.0	43190.9	21595.4	10797.7

(a)

(b)

2. LAVA

(a)

(b)

3. LAVA

5. LAVA

6.