LAVA

Analyses of the LAVA Experimental Results on Melt Relocation Progress

Abstract

The analyses of the melt relocation progress focused on the formation of the fragmented particles and the energy transfer to surrounding water have been performed for the LAVA experiments whose objectives are to investigate the in-vessel corium retention through a gap cooling. During the melt relocation process 10.0 to 20.0 % of the melt mass was fragmented and also 15.5 to 47.5 % of the thermal energy of the melt was transferred to water inside the lower head vessel. The increase of the fragmented particles leads to the pressurization of the LAVA vessel and the heat transfer to water, which reduces the initial thermal attack from the melt after all. The experimental results are coincident with the results of the TEXAS-III code calculation and also simple model evaluations on the melt relocation progress. Using the fractions of the fragmented particles and energy transfer to water in the LAVA experiments, the initial temperature of the melt pool was evaluated.

1.

LAVA

, (subcooling) 12 . 1 . , (pressure load)

(thermal load) . LAVA Al₂O₃/Fe Al₂O₃ , Al₂O₃ Fe , Al₂O₃ Fe ブ 500K 2600kg/m³ Fe 7000 kg/m³ ブ

,

LAVA

.

.

TEXAS-III LAVA

3. LAVA

.

LAVA

3-1.

(fragmentation)

가

.

. FAI[3] (*dm/dt*) (*E*) (1) (2) . (1) *V* LAVA *dP/dt* . (2) *A_{cross} h_{fg}*

LAVA

2 . LAVA (P_total) thermite (P_thermite) (P_steam)

. Thermite LAVA

가 .

1.7bar

30kg

 Al_2O_3

 $\frac{dm}{dt} = m_{evap} = \frac{(MW)V}{RT}\frac{dP}{dt}$ (1)

thermite

$$E = \frac{m_{evap} h_{fg}}{A_{cross}} \tag{2}$$

LAVA

가 (**D**t) (3) (E_{total}) (4) $(E_{relocation})$ LAVA thermite . thermite •

> 3 .

 $E_{relocation} = E \cdot \Delta t \cdot A_{cross} + M_w c_p \Delta T$

 $2Al + Fe_2O_3 \rightarrow Al_2O_3 + Fe + 3978kJ / kg$ (4) $E_{total} = M_{melt} \times 3978 kJ / kg$ ()

가 Al₂O₃

가 LAVA-8

3

LAVA-1, 2, 6

Al₂O₃/Fe

5 Fe Fe LAVA Al_2O_3 가

.

.

. LAVA

· LAVA 가

7F .

3-2.

(cake)가 가 . LAVA 1 Al₂O₃ . 가 . LAVA FARO FCI . 가 가 .

 (void fraction)
 가

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 <t

TEXAS [7] (m_f) (5) TEXAS . (5) . 가 (F)가 가 가 . 가 (\mathbf{r}_c) 가 가 .

 $\mathbf{\dot{m}}_{f} = C\mathbf{r}_{f} 4\mathbf{p} R_{p}^{2} N_{p} V_{jet} F$ (5)

 $V_{jet} = \left(\frac{P - P_{th}}{r_c}\right)^{0.5}$

mm cm 4 5.7 mm 2.0 mm 10.0 % FARO [4,5] Al_2O_3 ALPHA [8] LAVA mn 2 . . 가 . 가 cm [4,5,8]. LAVA (fragmentation) (pool) (cake) . Rayleigh-Taylor instability (leading edge) jet Kelvin-Helmholtz instability jet capillary wave [9]. **TEXAS-III** [10] **TEXAS-III TEXAS-III** 5 3 . LAVA **TEXAS-III** . TEXAS-III LAVA 가 **TEXAS-III** Rayleigh-Taylor instability 1 . Rayleigh-Taylor instability **TEXAS-III** jet Kelvin-Helmholtz instability jet semi-empirical (6) Epstein[11] (6) jet (7) jet Kelvin-Helmholtz instability jet erosion (8) . (6) r_j , r_g jet

jet

 u_j

•

Mass rate of jet breakup,
$$m_{br} = 0.08 \cdot \left(\frac{\boldsymbol{r}_g}{\boldsymbol{r}_j}\right)^{1/2} \boldsymbol{r}_j \boldsymbol{u}_j$$
 (6)

 M_{melt}

Jet mass flow rate,
$$m_j = \frac{\mathbf{p}}{4} \cdot d_j^2 \cdot \mathbf{r}_j \cdot u_j$$
 (7)

Fragmented particle mass,
$$m_{erosion} = m_{br} \cdot A_{jet_surface} \cdot \frac{M_{melt}}{m_j}$$
 (8)

5 jet erosion . Epstein

 LAVA
 Al₂O₃

 3.8 ~ 44.7 %
 7

 erosion
 . TEXAS-III

 7
 .

 7
 .

 7
 LAVA-11

TEXAS-III jet erosion jet erosion FARO L-08, L-19 FARO L-08 L-19 44kg 157kg UO₂-ZrO₂

TEXAS-III

가

•

. TEXAS				ТЕХ	KAS-III	
Rayleigh-Taylor ins	tability		jet (l	eading edge)	K	elvin-
Helmholtz instability	jet	t	erosion			jet
Boundary layer	stripping				TEXAS-V	
[12].						
3-3.						
	LAVA					
LAVA					15.5 ~ 47.5 %	가
,		10.0 ~	- 20.0 % 7	ŀ		
. Thermite						
		the	rmite		가	
			가			
			LiLAC	[13]		
LAVA		•		W/Re	2	
(two color pyrometer)		thermite				
4			. Thermite			
		가			가	
W/Re		가				
					가	
W/Re				W/Re		
	. W/Re				± 1 %	
				2700K		
(d_{dp})	(9)		[14].			
		가	(10)		(T_{dp})

[14].

 $d_{dp} = \left(\frac{\boldsymbol{s}_{dj}}{g\boldsymbol{r}_{dj}}\right)^{\frac{1}{2}} \tag{9}$

$$T_{dp} = \left(\frac{18s \ e \ t}{r_{dj} d_{dp} c_{p,dj}} + \frac{1}{T_{dp,o}^{3}}\right)^{-\frac{1}{3}}$$
(10.)

LAVA			15	% フト
35 %	가	가		
(11)				
$m_{fg} \left[h_{fs} + c \right]$	$\left[T_{dp,o} - T_{dp} \right] + m_{po}$	$_{ol}[h_{fs} + c_{p,dj}(T_{dp,o} - T_{dp,o})]$	$\left[T_{pool}\right] = 41.8M$	J (11)
(9)			5.2mm .	jet
	2700K		1.3	가
	(10)	2212 K 가	(11)	
	2514.4 K 가 .			
4.				
1 4374				
LAVA				
				Al_2O_3
		가		LAVA
				10.0 ~ 20.0 %
가		15.5 ~ 47.5 %	가	
	가		가	
I AVA				
			r	
			L	
	. TEXAS-III			
Epstein				LAVA
. TE	XAS-III			
		가	LAVA	
	. 가	LAVA		
	가		LAVA	
	LAVA			
	LAVA			
	т •т			ταττά
	L1L	AU	• • • • •	LAVA
			LAVA	
フト				

LAVA

TEXAS-III

가 3 1 가

- 1. J. R. Wolf et. al., TMI 2 Vessel Investigation Project Integration Report, NUREG/CR 6197 (EGG 2734), 1994
- 2. L.A. Stickler, et al., Calculations to Estimate the Margin to Failure in the TMI-2 Vessel, NUREG/CR-6196(EGG 2733), 1994
- 3. R. J. Hammersley et al., Experiments to Address Lower Plenum Response Under Severe Accident Conditions, EPRI
- D. Magallon et al., Experimental Investigation of 150-kg-scale Corium Melt Jet Quenching in Water, Nuclear Engineering and Design 177(1997), 321 – 337
- D. Magallon et al., Lessons Learnt from FARO/TERMOS Corium Melt Quenching Experiments, Nuclear Engineering and Design 189(1999), 223 – 238
- A. Annunziato et al., TMI-2 Simulation by RELAP5/SCDAP and COMETA Codes, 8th International Conference on Nuclear Engineering(ICONE-8), April 2 – 6, 2000, Baltimore, MD USA
- 7. Jian Tang, Modeling of the Complete Process of One-Dimensional Vapor Explosions, PhD Thesis, University of Wisconsin Madison, 1993
- N. Yamano et al., Phenomenological Studies on Melt-Coolant Interactions in the ALPHA Program, Nuclear Engineering and Design 155(1995), 369 – 389
- M. L. Corradini, Vapor Explosions : A Review of Experiments for Accident Analysis, Nuclear Safety, Vol. 32, No. 3, July – September 1991
- 10. M. L. Corradini, et al., TEXAS-III Code Manual, 1994
- M. Epstein et al., The Three Mile Island Unit 2 Core Relocation Heat Transfer and Mechanism, Nuclear Technology Vol. 87, Dec. 1989
- M. L. Corrradini et al., Fuel Fragmentation Model Advances using TEXAS-V, JAERI-Conf 97-011, 1997, 733 – 750
- 13. J. Kim et al., Analysis of Natural Convection Heat Transfer and Solidification of a Two-Layered Pool, to be

published at Journal of Korean Society of Computational Fluids Engineering, Vol. 6, 2001

14. K. Y. Suh et al., Debris Interactions in Reactor Vessel Lower Plena During a Severe Accident: I. Predictive Model, Nuclear Engineering and Design

Test	Composition & Mass of Melt	Subcooling & Depth	In / Ex-Vessel Pressure
		(& Mass) of Water	
LAVA-1	Al_2O_3 /Fe, 40 kg	55 K, 50 cm (70kg)	17.4 / 17.4 bar
LAVA-2	Al_2O_3 /Fe, 40 kg	46 K, 50 cm (70kg)	17.5 / 1.0 bar
LAVA-3	Al ₂ O ₃ , 30 kg	43 K, 50 cm (70kg)	16.7 / 1.0 bar
LAVA-4	Al ₂ O ₃ , 30 kg	50 K, 50 cm (70kg)	17.9 / 1.0 bar
LAVA-5	Al ₂ O ₃ , 30 kg	22 K, 50 cm (70kg)	17.9 / 1.0 bar
LAVA-6	Al_2O_3 /Fe, 40 kg	52 K, 50 cm (70kg)	17.6 / 1.0 bar
LAVA-7	Al ₂ O ₃ , 30 kg	34 K, 50 cm (70kg)	18.4 / 1.0 bar
LAVA-8	Al ₂ O ₃ , 30 kg	56 K, 25 cm (28kg)	16.4 / 1.0 bar
LAVA-9	Al ₂ O ₃ , 30 kg	24 K, 50 cm (70kg)	17.0 / 1.0 bar
LAVA-10	Al ₂ O ₃ , 30 kg	5 K, 50 cm (70kg)	16.2 / 1.0 bar
LAVA-11	Al ₂ O ₃ , 72 kg	52 K, 50 cm (70kg)	17.3 / 1.0 bar
LAVA-12	Al ₂ O ₃ , 70 kg	40 K, 50 cm (70kg)	15.5 / 1.0 bar

1. LAVA

	P_thermite	P_steam	P_total	Steam Generation	Energy Flux
	(bar)	(bar)	(bar)	Rate (kg/s)	(MW/m^2)
LAVA-1	-	-	3.37	1.69	8.27
LAVA-2	-	-	3.29	0.49	2.40
LAVA-3	-	-	3.50	0.53	2.60
LAVA-4	-	-	4.63	1.15	5.63
LAVA-5	1.80	4.87	6.67	0.88	4.31
LAVA-6	-	-	3.91	2.09	10.23
LAVA-7	1.70	2.80	4.50	0.41	2.00
LAVA-8	1.41	1.42	2.83	0.18	0.88
LAVA-9	1.83	2.62	4.45	0.32	1.54
LAVA-10	1.60	3.55	5.15	0.68	3.33
LAVA-11	2.82	11.34	14.16	2.13	10.43
LAVA-12	2.70	5.33	8.03	0.95	4.65

	(sec)	E_{total} (MJ)	$E_{relocation}$ (MJ)	$E_{relocation}/E_{total} \times 100$ (%)
LAVA-1	8.9	159.1	43.9	27.6
LAVA-2	29.9	159.1	43.7	27.5
LAVA-3	29.2	119.3	44.8	37.6
LAVA-4	17.8	119.3	54.4	45.6
LAVA-5	24.6	119.3	56.7	47.5
LAVA-6	8.3	159.1	48.4	30.4
LAVA-7	30.4	119.3	38.9	32.6
LAVA-8	35.5	119.3	18.5	15.5
LAVA-9	36.9	119.3	37.3	31.3
LAVA-10	23.2	119.3	45.4	38.0
LAVA-11	23.6	278.5	111.7	40.1
LAVA-12	59.7	278.5	124.1	44.5

	≥ 5.7 mm	4.0 ~ 5.7 mm	2.0 ~ 4.0 mm	0.4 ~ 2.0 mm	\leq 0.4 mm
LAVA-4	69.7 %	8.1 %	12.4 %	8.6 %	1.4 %
LAVA-5	83.2 %	6.1 %	6.1 %	4.3 %	0.4 %
LAVA-6	79.7 %	13.3 %	5.1 %	1.6 %	0.3 %
LAVA-7	78.6 %	10.1 %	7.6 %	3.3 %	0.4 %
LAVA-8	80.0 %	8.8 %	7.2 %	3.9 %	0.5 %
LAVA-9	76.9 %	18.2 %	2.9 %	2.0 %	0.2 %

	Experiments	TEAS-III ($m_{leading}$)	Jet erosion ($m_{erosion}$)	$m_{leading} + m_{erosion}$
	(kg/%)	(kg/%)	(kg/%)	(%)
LAVA-1	0.8 / 2.0	-	-	
LAVA-2	2.8 / 7.0	2.6 / 6.5	-	
LAVA-3	4.2 / 14.0	1.7 / 5.7		16.5
LAVA-4	3.3 / 11.0	1.7 / 5.7	3.24 / 10.8	16.5
LAVA-5	13.4 / 44.7	3.4 / 11.2		21.8
LAVA-6	3.7 / 9.3	2.6 / 6.5	-	
LAVA-7	6.3 / 21.0	-		
LAVA-8	3.0 / 10.0	2.6 / 8.7		19.5
LAVA-9	5.2 / 17.3	3.4 / 11.2	3.24 / 10.8	22.0
LAVA-10	4.5 / 15.0	-		
LAVA-11	3.2 / 4.6	-		
LAVA-12	11.5 / 16.4	-	7.57 / 10.8	

2. Al₂O₃

5. Thermite