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The Development of A New Algorithm to Calculate A Survival Function in Non-

parametric Ways

Abstract

In this study, a generalized formula of the Kaplan-Meier method is developed. The idea of this

algorithm is that the result of the Kaplan-Meier estimator is the same as that of the redistribute-to-the-

right algorithm. Hence, the result of the Kaplan-Meier estimator is used when we redistribute to the right.

This can be explained as the following steps, at first, the same mass is distributed to all the points. At

second, when you reach the censored points, you must redistribute the mass of that point to the right

according to the following rule; to normalize the masses, which are located to the right of the censored

point, and redistribute the mass of the censored point to the right according to the ratio of the normalized

mass. Until now, we illustrate the main idea of this algorithm. The meaning of that idea is more efficient

than PL-estimator in the sense that it decreases the mass of after that area. Just like a redistribute to the

right algorithm, this method is enough for the probability theory.

I. Introduction

There are generally two kinds of methods to estimate reliability that focuses on system or component

failure in engineering, or survival function that focuses on patient death in medicine. They are parametric

and non-parametric methods. As we know, there are few data related to severe accidents in nuclear power

plants. Therefore, the parametric method has been used. But if we have lots of data concerned with

system failure or patient death, the non-parametric method could be used to estimate reliability or survival

function. In this paper we focus on the latter in which case some problems can arise when we treat the

Kwang-Won Ahn, Yoonik Kim and Chang-Hyun Chung

Seoul National University

San 56-1 Shilim-dong Kwanak-gu

Seoul, 151-742, Korea

Kil Yoo Kim

Korea Atomic Energy Research Institute

Taejon, Korea, 306-600 Integrated Safety Assessment Team



data. That is to say, when we treat the data, not only uncensored data but also the censored data included

in them. Therefore, it is important to estimate correct reliability or survival function that reflects the

information of the censored data, when we use the non-parametric method.

There are several methods e. g, to estimate survival function in non-parametric ways, reduced sample

method, actuarial method and Kaplan-Meier (Product-Limit) method. In this paper, the comparisons are

conducted between the PL-estimator and the new one. Because the reduced sample method and actuarial

method do not reflect censoring information correctly. Therefore, PL-estimator is used to compare the

result of the new algorithm.

II. Product-limit estimator

Let iτ , the right end point of iI , be the i-th ordered censored or uncensored observation.

            1I     2I                  nI

         0    1τ      2τ    . . .    1−nτ     nτ

Let )(tℜ  denote the risk set at time t, which is the set of subjects still alive at time t-, and let

#=in  in )( )(iYℜ =# alive at time −)(iY ,

#=id  died at time )(iY ,

Ppi = {surviving through iI | alive at beginning of iI },

   }|{ 1−>>= ii TTP ττ ,.

  From the estimates
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  ( i ) For tied uncensored observations, suppose just before time t, there are m individuals alive, and at

time t, d death occur. Split the time of the d deaths infinitesimally so that the factor for the d deaths in the

product-limit estimator is

  =censored and  =uncensored
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( ii ) If censored and uncensored observations are tied, consider the uncensored observations to occur

just before the censored observations.

( iii ) If the last(ordered) observation )(ny  is censored, then for 
^

)(tS  as defined above

0)(lim
^

>
∞→

tS
t

Sometimes it is preferable to redefine 0)(
^

=tS  for )(nyt ≥  or to think of it as being undefined for

)(nyt ≥  if 0)( =nδ .

  From notes ( i ) and ( ii ), by letting

)()2()1( ''' ryyy <⋅⋅⋅<<

denote the distinct survival times and









=
,0

,'1
' )(

)( censoredif

uncensoredareytimeatnsobservatiotheif j
jδ

),'(#' )( ji yinn ℜ=

,'#' )( ji ytimeatdiedd =

the PL estimate allowing for ties is

∏∏
≤≤

−=−=
ty j

j

tyu j

j

j

j

j
n

d

n

d
tS

)(

)(

)( '

'

':

^
)1()1()(

δ
. (2)

III. Redistribute-to-the-Right Algorithm

Efron introduced another method of computing the PL estimator. Generally speaking, the redistribute-

to-the-right algorithm gives the Kaplan-Meier product-limit estimator. Assuming no ties, there are two

principal ways of proving this result.

(1) With the redistribute-to-the-right algorithm, all points )(iy , censored or uncensored, initially have

equal mass 1/n. The algorithm moves from left to right through the order statistics. When it reaches

−)(iy , all the remaining points )(iy , )1( +iy , ⋅⋅⋅ , )(ny  have equal mass on them due to the way the

algorithm operates. Suppose the total remaining mass is )( )(

~
−iyS . By the equality of the mass )(iy  has

1

)( )(

~

+−

−

in

yS i  assigned to it, which it will keep if it is uncensored. If it is censored, this mass is distributed to

the right.



Since the PL estimator 
^
S  starts at 1 as dose 

~
S  and jumps of sizes 

1
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yS i  at the uncensored

observations and zero at the censored observations, the two estimators are identical.

(2) For the Kaplan-Meier estimator
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Let ijj <⋅⋅⋅<1  be the indices of the censored observations which precede )(iy . For the redistribute-

to-the-right algorithm the mass assigned to )(iy  if 1)( =iδ  is

.)
1

(
1

),
1

1()
1

1)(
1

1(
1

)(11

1

21

~

)(

ji

j

i
i

jn

jn

n

jnjnjnn
δ−−

=
∏ −

+−
=

−
+⋅⋅⋅

−
+

−
+=∆

(4)

and if 0)( =iδ , 0)(

~
=∆ i . This is identical to )(

^

i∆ , so the redistribute-to-the-right algorithm gives the

PL estimator.

IV. The advanced algorithm of computing the survival function

We introduced another method of computing the survival function. At first, we should formulize the PL

estimator as the basic mass of our estimator. Assume no ties.
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After first redistribution,
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After k-th redistribution, the mass of )(ky (= )(kw ) is defined as following equations.
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Therefore, the mass after last redistribution is defined as following equations.
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If we consider the ties, the results are the same as following equations.
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Until now, we derive a mass function, which will be used in the following theorem. We use this mass

function when we redistribute to the right of censoring point. This theorem will support the PL-estimator.

Because Kaplan-Meier (PL) estimator is rational if the survival tendency is fixed. But in the real world,

the events do not occur with same tendency. In this theorem, we distribute a same mass at first. This

assumption will be sufficient in the statistical point of view.



F(last observation)=1

S(last observation)=0

But it is rational considering the weighting of mass, which is located in the right of censoring point when

we redistribute the mass of censoring point to the right. From now, let’s derive a formula of estimating a

survival function, reflecting a tendency of data. The purpose of this paper is to estimate a correct survival

function. Therefore we develop a model that is more realistic.
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V. Sample calculation

Table1. 21 patients receiving<5000 rad, Survival rate using Kaplan-Meier method

Patient, rank
Survival time,

mo
Age at entry, yr Gender )(

^

tS n

1 7 68 F 0.9524
2 9 69 F 0.9048
3 12 68 F 0.8096
4 12 71 F 0.7620
5 23 77 M 0.7144
6 24 70 F 0.5239
7 24 67 F 0.5239
8 24 68 M 0.5239
9 24 88 M 0.5239

10 29+ 89 M 0.5239
11 34 28 M 0.4715
12 41 73 M 0.4191
13 54 60 F 0.3667
14 72+ 60 F 0.3667
15 78 44 M 0.3056
16 80+ 82 F
17 83+ 62 F
18 92+ 53 F
19 139+ 66 F
20 139+ 63 F
21 139+ 68 M
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Fig1. Survival function using Kaplan-Meier method.

Table2. Estimating survival function using the advanced algorithm

Patient,
rank

Survival
time, mo )(iw Mass at

Start

Mass After
First

Redistribut
ion

Mass After
Second

Redistribut
ion

)( )(

^

iyS

1 7 0.047619 0.047619 0.047619 0.047619 0.952381
2 9 0.047619 0.047619 0.047619 0.047619 0.904762
3 12 0.047619 0.047619 0.047619 0.047619 0.809524
4 12 0.047619 0.047619 0.047619 0.047619 0.809524
5 23 0.047619 0.047619 0.047619 0.047619 0.761905
6 24 0.047619 0.047619 0.047619 0.047619 0.571429
7 24 0.047619 0.047619 0.047619 0.047619 0.571429
8 24 0.047619 0.047619 0.047619 0.047619 0.571429
9 24 0.047619 0.047619 0.047619 0.047619 0.571429

10 29+ 0 0.047619 0 0 0.571429
11 34 0.051948 0.047619 0.051948 0.051948 0.519481
12 41 0.051948 0.047619 0.051948 0.051948 0.467533
13 54 0.051948 0.047619 0.051948 0.051948 0.415585
14 72+ 0 0.047619 0.047619 0 0.415585
15 78 0.059369 0.047619 0.052566 0.059369 0.356215
16 80+ 0.059369 0.047619 0.052566 0.059369
17 83+ 0.059369 0.047619 0.052566 0.059369
18 92+ 0.059369 0.047619 0.052566 0.059369
19 139+ 0.059369 0.047619 0.052566 0.059369
20 139+ 0.059369 0.047619 0.052566 0.059369
21 139+ 0.059369 0.047619 0.052566 0.059369
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Fig2. Survival function using the advanced algorithm.

VI. Summary and conclusion

Until now, we have shown the results of a sample calculation. Table.1 is calculated using the Kaplan-

Meier method. And Table.2 is calculated using the advanced algorithm. From the above result, it is

possible to compare the results of both the Kaplan-Meier method and the advanced algorithm. Therefore,

we know that the PL-estimator is available and agrees well with the results of the advanced algorithm.

That is to say, the shape of the two graphs is similar. This means that the PL-estimator reflects the

censoring information in it’s own ways. But if we think more strictly, it has overestimation near the last

point. For example, the comparison of the two methods shows that PL-estimator weighs too much at

t=78(months), so it’s survival function are less than the latter. However, the assumption of Kaplan-Meier

method is good in the sense of the probability theory. In other words, if the tendency of the survival rate is

same, it exactly corrects. But in the real phenomena, the pattern of the observations does not present the

same tendency. Therefore, this model is applicable to many fields such as a semi-parametric model or a

non-parametric model. Using this model, we will get more precise results. Of course, you may use

another models as a mass function according to the purposes such as the reduced sample method or

actuarial method. But adding to this algorithm, you will get a more exact result.
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