가

Evaluation of Containment P/T relating Feedwater Flow Rate Analysis following Main Steam Line Break Accident for Nuclear Power Plant

103 - 16

, 가 가 가 가 가

ABSTRACT

The Feedwater System supplies feedwater to the steam generator at the required pressure, temperature and flow rate during the plant start-up, normal power operation, shutdown. When the Feedwater System is inoperable or unavailable, the Auxiliary Feedwater System supplies emergency feedwater to the steam generator. If main steam line break occurs, the increase of feedwater flow rate to the faulted steam generator due to decrease of the pressure in the faulted steam generator results in adverse effects in aspect of overcooling the Reactor Coolant System and increased containment pressure/temperature. To optimize the containment mass/energy analysis, this paper evaluates the maximum feedwater and auxiliary feedwater flow rate delivered to the faulted steam generator at each stage of pressure decrease in the faulted steam generator after a main steam line break accident. Calculated Feedwater flows are applied to calculate mass and energy release following MSLB accident. Also containment P/T results were compared with the cases which are the current conservative feedwater flow and proposed feedwater flow.

1.

, 가 가 가 .

가

가

, 2

2. MathCad7.0 1 3. 3.1 Case 1 Design Report FSAR Isometric Drawing Crane Technical Paper No. 410 가 P&ID 2 Downcomer 3 3 2 3 3.2 Case . 1 FSAR 10.4.9 Auxiliary Feedwater System Crane Technical Paper No. 410 Isometric Drawing P&ID 2 Downcomer 가 (Limiting Single Failure) Containment Safeguard System

(Station Blackout)

Low-Low Level

2

. (,) 가

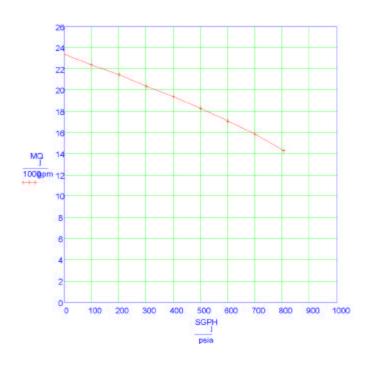
가 215 gpm (50 m ³/hr) 가 .

.

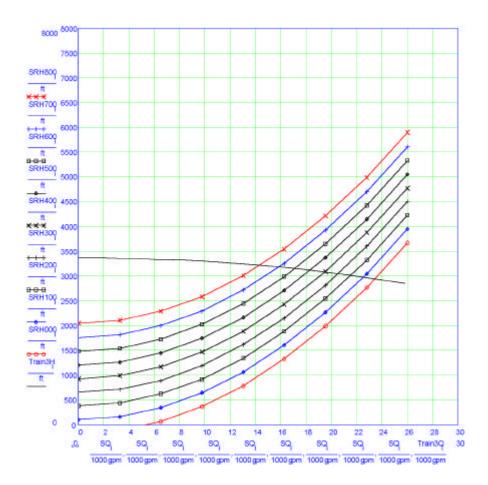
4 .

4.

4.1


3

1


1 .

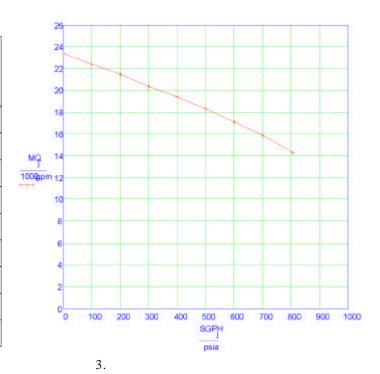
1.

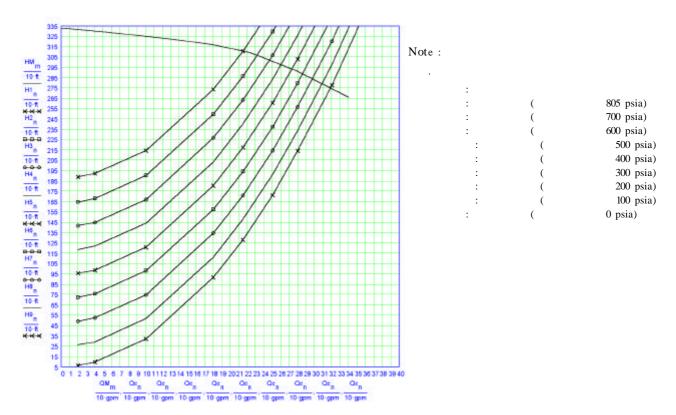
Operating Condition	S/G Pressure (psia)	Max. Feedwater Flow to Affected S/G (gpm)	
Case 1	805	14,314 gpm	
Case 2	700	15,872 gpm	
Case 3	600	17,083 gpm	
Case 4	500	18,293 gpm	
Case 5	400	19,442 gpm	
Case 6	300	20,407 gpm	
Case 7	200	21,493 gpm	
Case 8	100	22,417 gpm	
Case 9	0	23,421 gpm	

1.


```
Note:

: 3
: ( 805 psia)
: ( 700 psia)
: ( 600 psia)
: ( 500 psia)
: ( 400 psia)
: ( 300 psia)
: ( 200 psia)
: ( 100 psia)
: ( 0 psia)
```


2. System Resistance Curves vs. Combined Feedwater Pump Curve


4.2

2

3

	Max. Auxiliary		
S/G Pressure	Feedwater Flow		
(psia)	to Affected S/G		
	(gpm)		
805	215 gpm		
700	232 gpm		
600	247 gpm		
500	260 gpm		
400	275 gpm		
300	286 gpm		
200	298 gpm		
100	309 gpm		
0	318 gpm		
	(psia) 805 700 600 500 400 300 200 100		

4 System Resistance Curves vs. Auxiliary Feedwater Pump Curve

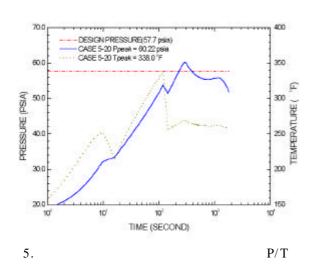
5. /

3

, Peak Pressure

1 , Case : 1.4ft² Double Ended Break, : 102% Power Level, : 2400ppm, : CSS(Containment Safeguard System) Failure

.


3. P/T

Peak Pressure		Peak Temperature		
Pr. (psi)	(second)	T em p	(second)	
60.22	292	338.0	117	
54.67	206	339.8	119	

/ LOFTRAN Code P/T CONTEMPT L/T - 28 Code

3 4, 5

60.22psi 54.67 psi 9.2% 7\ .

가

P/T

6.

가 . 1

Peak Pressure
9.2%

7.

. "가

- 1. Design Report of Feedwater System for KORI Nuclear Power Plant Unit 1
- 2. FASR 10.4.9 of Auxiliary Feedwater System for KORI Nuclear Power Plant Unit 1
- 3. Piping & Instrumentation Diagram of Feedwater / Auxiliary Feedwater System for KORI Nuclear Power Plant
- 4. Isometric Drawing of Feedwater/Auxiliary Feedwater System for KORI Nuclear Power Plant Unit 1
- 5. Crane Tech. Paper No. 410