

A Risk Assessment Using an OMAM Framework

Abstract

Risk composes of a set of triplets, $\langle S_i, P_i, X_i \rangle$ where S_i is a scenario identification; P_i is the probability of that scenario; and X_i is the consequences of that scenario. In this paper, a new computing framework, OMAM(ORIGEN-MAAP4-MAACS), is suggested and applied for assessing the risk of a reference plant. Ulchin 3, 4 units are used as the reference plants for quantifying the radiation risk. The results of this study using the OMAM framework might contribute to producing domestic risk data as well as establishing the risk DB.

1.

.[1]

$$(Risk) = (Uncertainty) \quad (Damage) \tag{1}$$

3

$$R = \{ < S_{\nu} P_{\nu} X_{i} > \}, \quad i = 1, 2, 3, ..., N$$
(2)
,
$$S_{i}:$$

$$P_{i}:$$

$$X_{i}:$$
(3)
$$7 = 7$$
,
(Cumulative Probability)

$$X_1 \mathbf{f} X_2 \mathbf{f} X_3 \mathbf{f} \dots \mathbf{f} X_N$$

•

(3) 3 (Triplet),
$$< S_i, P_i, X_i > 1$$

 $< X_i, P_i > .[1]$

1	3		
	가		
S_I	P_{I}	X_{I}	$P_1 = P_2 + P_1$
S_2	P_2	X_2	$P_2 = P_3 + P_2$
S_i	P_i	X_i	$P_i = P_{i+1} + P_i$
•	•	•	•
S_{N-I}	P_{N-I} .	X_{N-I} .	$P_{N-I} = P_N + P_{N-I}$
$S_{\scriptscriptstyle N}$	P_{N}	X_N	$P_N = P_N$

3, 4

기IPE(IndividualPlant Evaluation)OMAM(ORIGEN-MAAP4-MACCS)기기, ORIGENInventory, MAAP4, MACCS

(3)

2. ORIGEN	Inventory	
		Inventory
ORIGEN-S	. ORNL	ORIGEN
	, ,	,
ORIGEN-S		NITAWL-II, XSDRNPM
Cross-Sect	ion	
3, 4	4	9가 (A, B, B1, B2, C, C1, D, D1,
D2)	Batch 가 . Batch	Cycle
. ORIGEN	Inventory	Batch
	. Batch UO ₂	U-235, U-238 (Ratio)
	2	Batch .

.

2	Batch
-	Dutth

Assembly Type	No. of Assembles	Fuel Enrichment (wt% U-235)	No. of Fuel Rods per Assembly	No. of Poison Rods per Assembly	Gd ₂ O ₃ wt% in Nat'l UO ₂
A	45	1.28	236	-	-
В	20	2.35	236	-	-
B1	8	2.35/1.28	176/52	8	4
B2	16	2.34	232	4	4
С	12	2.84/2.36	184/52	-	-
C1	32	2.85/2.36	176/52	8	4
D	12	3.33/2.85	184/52	-	-
D1	8	3.33/2.84	176/52	8	4
D2	24	3.33/2.84	128/100	8	4

2	,	Batch	,
U-235	U-238		. , Burnup
	3		1 Cycle, 371 (13,661 MWD/MTU) 7
가		가	Inventory 7
가		1	Batch U-235 U-238
ORIGEN		•	

			U-235	U-238		
ORIGEN		Inventory	MAAP4	MACCS		
				가	가	,
						,
	3, 4	•				

3 MAAP4

Inventory

Flomento	Inver	ntory(kg)
Erements	This Work(13,661MWD/MT)	KAERI PSA Report(44,000MWD/MT)
XE-131	15.62	330.58
KR-84	3.62	23.79
I - 131	0.00	14.92
RB-86	0.00	17.88
CS-133	38.46	173.44
SR-88	11.57	59.84
BA-138	40.78	88.47
Y-89	12.82	30.94
LA-139	38.79	77.17
ZR-91	189.29	226.28
NB-109	0.00	3.12
MO-96	0.32	201.60
TC-99	26.43	48.06
RU-101	24.63	147.35
SB-122	0.00	1.95
TE-128	2.74	29.62
CE-140	38.88	175.54
PR-141	31.50	67.99
ND-144	16.37	228.99
SM-150	10.27	40.37
NP-237	9.77	32.99
PU-239	305.50	614.18

4 MACCS

Inventory

Nuclide	Activity (Bq)	Nuclide	Activity (Bq)	Nuclide	Activity (Bq)
CO-58	2.96E+16	RU-103	4.16E+18	CS-136	6.01E+16
CO-60	1.51E+16	RU-105	2.80E+18	CS-137	1.28E+17
KR-85	1.16E+16	RU-106	7.86E+17	BA-139	5.19E+18
KR-85M	7.25E+17	RH-105	2.52E+18	BA-140	5.09E+18
KR-87	1.46E+18	SB-127	2.33E+17	LA-140	5.42E+18
KR-88	2.03E+18	SB-129	8.89E+17	LA-141	4.66E+18

RB-86	1.77E+15	TE-127	2.25E+17	LA-142	4.56E+18
SR-89	2.90E+18	TE-127M	3.32E+16	CE-141	4.69E+18
SR-90	9.56E+16	TE-129	8.42E+17	CE-143	4.37E+18
SR-91	3.49E+18	TE-129M	1.68E+17	CE-144	2.49E+18
SR-92	3.73E+18	TE-131M	5.49E+17	PR-143	4.23E+18
Y-90	1.07E+17	TE-132	4.06E+18	ND-147	1.86E+18
Y-91	3.70E+18	l - 131	2.77E+18	NP-239	5.97E+19
Y-92	3.77E+18	l - 132	4.05E+18	PU-238	9.72E+14
Y-93	2.83E+18	l - 133	5.76E+18	PU-239	7.02E+14
ZR-95	4.93E+18	l - 134	6.40E+18	PU-240	6.80E+14
ZR-97	4.73E+18	l - 135	5.46E+18	PU-241	1.77E+17
NB-95	4.89E+18	XE-133	5.50E+18	AM-241	7.38E+13
MO-99	5.21E+18	XE-135	1.22E+18	CM-242	1.47E+16
TC-99M	4.60E+18	CS-134	9.54E+16	CM-244	3.37E+14

3.

Release	Fraction	MAAP	4.0.2	[8],	
STC(Source	Term Category)				, PDS-
CET(Containment Event	Tree)		가		
MAAP		STC			
(Containment Sequence C	haracteristics)				

-	(Containment Bypass; CONBYPASS)
-	(Containment Isolation Status;CONISOLAT)
-	(Core Melt Progression Stopped before RV Failure/Debris Cooled In-vessel;
	MELTSTOP)
-	α- (No Alpha Mode Containment Failure; NO-ALPHA)
-	(Time of Containment Failure; TIME-CF)
-	(Mode of Containment Failure; MODE-CF)
-	(Debris Cooled Ex-vessel; EXVCOOL)
-	(No Recirculation Sprays Failure; NO-RECSP)

STC

가

5

• .[11]

5 STC

Calculatio n	Containment Failure Mode and Time	Initiator	
	Core melt stopped before reactor vessel failure;		
STC01	SIT Injection Success		
	LPSIS Injection Fail	Large LOCA	
	HPSIS Injection Success		
	Recirc. Cooling Using CSS Success		
	Reactor vessel failed, Containment do not failed;		
	Reactor Trip Success		
	AFW Fail		
07000	Bleed RCS Fail	Lass of Food Water	
51002	LPSIS Injection Success	Loss of Feed water	
	LPSIS Recirc. Success		
	CTMNT Spray Injection Success		
	Recirc. Cooling Using CSS Success		
07000	Early Containment Failure, Leak;	Lees of Food Water	
51003	Similar with STC02	Loss of Feed Water	
07004	Early Containment Failure, Rupture;	Lees of Food Water	
51004	Similar with STC02	Loss of Feed water	
	Late Containment Failure, Leak;		
	Reactor Trip Success		
	HPSIS Injection Success		
	AFW Success		
STC06	Steam Removal via ADV Success	Small LOCA	
	HPSIS Recirc. Fail		
	Depress RCS for LPSIS Recirc. Success		
	LPSIS Recirc. Fail		
	Recirc. Using CSS Fail		
	Late Containment Failure, Leak;		
	Reactor Trip Success		
	AFW Success		
STC08	Steam Removal via ADV Success	Station Blackout	
	Restore AC Power(late) Fail		
	Restore AC Power Prior Vessel Failure Fail		
	Restore AC Power Prior CTMNT Failure Fail		
STC10	Late Containment Failure, Rupture;	Small LOCA	
31010	Similar with STCO6	Small LOCA	
STC12	Late Containment Failure, Rupture;	Station Plankout	
51012	Similar with STCO8	STATION BIACKOUL	
	Basemat Melt-through;		
STC13	Similar with STCO2	Loss of Feed Water	
	Without Safety Injection and CTMNT Spray Injection		

STC14	Alpha Mode Failure; Similar with STCO2	Loss of Feed Water
07015	Containment Failure before Reactor Vessel Failure;	
51015	Without CTMNT Heat Removal System	Large LOUA
STC16	Isolation Failure; CTMNT Failure with the successful Recirc. Spray	Large LOCA
STC17	Isolation Failure; CTMNT Failure with the Failure of Recirc. Spray	Large LOCA
STC18	V-sequence (Bypass)	Station Blackout
STC19	Steam Generator Tube Rupture (Bypass); Reactor Trip Success HPSIS Injection Fail Steam Removal via MSSV Fail	SGTR

4.

MACCS			ORIGI	EÌ	N		Ir	ive	ntory	MAAP
4.0.2			Release	e	Fraction		. MACCS	1	5.11.1	
					(1992),				
1	10				64km					
	,	Consequence	Early		Fatality					
		6	:	S	TC				7	OMAM
Framework					[Sv]					
		Sv								

6

STC	XE/KR	Ι	CS	TE	SR	LA	CE	BA
1	0.000E+00							
2	0.000E+00							
3	9.646E-01	5.672E-03	1.255E-02	2.088E-02	4.304E-05	2.126E-05	3.795E-05	7.270E-04
4	9.944E-01	2.986E-02	6.733E-02	5.968E-02	2.448E-04	1.209E-04	2.165E-04	4.140E-03
6	0.000E+00	2.004E-03	5.591E-03	0.000E+00	9.569E-05	1.590E-04	1.809E-04	6.950E-04
8	9.081E-01	5.572E-04	3.128E-03	1.103E-01	1.253E-08	2.476E-09	2.249E-10	4.590E-07
10	0.000E+00							
12	9.120E-01	2.488E-04	1.432E-03	4.071E-02	8.376E-09	1.668E-09	1.166E-10	3.280E-07
13	0.000E+00	1.571E-04	4.722E-04	4.894E-02	1.237E-08	3.322E-09	1.865E-10	3.820E-07
14	0.000E+00							
15	6.296E-02	2.183E-03	1.072E-02	0.000E+00	5.793E-06	6.594E-06	1.019E-05	6.530E-05
16	9.998E-01	5.776E-03	1.789E-02	0.000E+00	6.024E-06	6.503E-06	6.208E-06	7.210E-05

17	9.616E-01	6.416E-02	1.768E-01	3.291E-02	5.174E-04	5.172E-04	6.555E-04	5.120E-03
18	0.000E+00							
19	7.303E-01	0.000E+00						

distance[km]	stc#1	stc#2	stc#3	stc#4	stc#6	stc#8	stc#12	stc#13	stc#15	stc#16	stc#17
1.6-3.2	2.47E-02	1.77E-02	1.60E-02	1.02E-02	4.20E-03	1.12E-03	4.22E-04	2.02E-04	2.47E-02	1.77E-02	1.60E-02
3.2-4.8	2.80E-02	2.42E-02	2.52E-02	2.18E-02	1.29E-02	3.23E-03	1.23E-03	5.91E-04	2.80E-02	2.42E-02	2.52E-02
4.8-6.4	2.80E-02	2.42E-02	2.52E-02	2.18E-02	1.29E-02	3.23E-03	1.23E-03	5.91E-04	2.80E-02	2.42E-02	2.52E-02
6.4-8.0	2.00E-01	1.17E-01	8.04E-02	7.24E-02	8.08E-02	1.10E-01	5.55E-02	3.17E-02	2.00E-01	1.17E-01	8.04E-02
8.0-16.0	7.38E-02	6.55E-02	5.70E-02	4.38E-02	2.64E-02	2.89E-02	1.77E-02	1.40E-02	7.38E-02	6.55E-02	5.70E-02
16.0-32.0	1.64E-01	1.03E-01	6.97E-02	4.83E-02	3.38E-02	8.27E-02	4.25E-02	2.16E-02	1.64E-01	1.03E-01	6.97E-02
32.0-48.0	1.17E-01	6.67E-02	5.11E-02	4.14E-02	2.63E-02	4.59E-02	1.92E-02	9.16E-03	1.17E-01	6.67E-02	5.11E-02
48.0-64.0	6.13E-02	3.58E-02	2.85E-02	2.53E-02	1.67E-02	3.80E-02	1.47E-02	7.10E-03	6.13E-02	3.58E-02	2.85E-02

5. 가

MACCS Consequence 가 . Early Fatality Latent Cancer Fatality 8 2 . OMAM Early Fatality 1.54×10⁻¹¹/RY, Latent Cancer Fatality 4.08×10⁻⁵/RY

Early Cancer (Freq.) * (Freq.) * STC Frequency Fatality Fatality (E/F) (C/F) 1 2.33E-06 0.00E+00 1.40E+00 0.00E+00 3.27E-06 2 3.40E-06 0.00E+00 3.32E+00 0.00E+00 1.13E-05 3 1.30E-08 9.21E-06 2.90E+01 1.20E-13 3.78E-07 4 2.54E-04 4.57E-12 9.64E-07 1.80E-08 5.36E+01 6 0.00E+00 0.00E+00 5.69E-06 2.90E-07 1.96E+01 8 1.61E-07 3.79E-05 2.53E+01 6.09E-12 4.07E-06 1.35E+01 12 7.80E-08 0.00E+00 0.00E+00 1.05E-06 13 1.62E-07 0.00E+00 1.01E+01 0.00E+00 1.63E-06 15 4.92E-07 0.00E+00 0.00E+00 1.22E-05 2.49E+01 16 5.40E-09 9.10E-06 3.01E+01 4.91E-14 1.63E-07 17 2.76E-09 1.66E-03 7.93E+01 4.57E-12 2.19E-07

8

[Unit: Sv]

7

OMAM(ORIGEN-MAAP4-MACCS) 가 . 가 가 가 OMAM 20 DB 7. 1. S. Kaplan and B. J. Garrick, "On The Quantitative Definition of Risk," Risk Analysis, Vol. 1, No. 1, 1981

- 2. US NRC, "PRA Procedure Guide Vol 1," NUREG/CR-2300, 1983
- 3. US NRC, "PRA Procedure Guide Vol 2," NUREG/CR-2300, 1983
- 4. N. J. McCormick, "Reliability and Risk Analysis Methods and Nuclear Power Application," Academic Press, New York, 1981
- 5. O. W. Hermann, R. M. Westfall, "ORIGEN-S: Scale System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buildup and Decay, and Associated Radiation Source Terms," ORNL, NUREG/CR0200, 2000
- " 가 ," , 1993 6.
- 7. "Final Probabilistic Safety Assessment Report," , Vol. 1~4
- "MAAP4 Modular Accident Analysis Program for LWR Power Plants," EPRI, Vol 1~3, 1994 8.
- 9. "Reactor Safety Study," WASH-1400
- 10. "Nuclear Design Report for Ulchin Nuclear Power Plant Unit 3 Cycle 1," , 1998
- 11. " 가," KEPRI Technical Report, TR.96NS20.97.80, 1997

가 (iTRS)

6.

(a) U-235

(b) U-238

1. D2 Batch U-235 U-238

(a) Early Fatality

(b) Cancer Fatality