Development of Seismic Analysis Model of LMFBR and Seismic Time History Response Analysis

2001

ABSTRACT

The main objective of this paper is to develop the seismic analysis model of KALIMER reactor structures including the primary coolant of sodium and to evaluate the seismic responses of the maximum peak acceleration and the relative displacements by the time history seismic response analyses. The seismic time history response analyses were carried out for both cases of the seismic isolation design and the non-isolation one to verify the seismic isolation performance. From the results of seismic response analysis using the developed seismic analysis model, it is clearly verified that the seismic isolation design gives very significantly reduced seismic responses compared with the non-isolation design. All design criteria for the relative displacement response were satisfied for KALIMER reactor structures.

1.

KALIMER

2. KALIMER

		KALIMER				
	I-DEAS ⁽⁶⁾	Fig. 1			KALIME	R
(Containment Vessel),		(Reactor	Vessel),		(Internal	Structure),
(Core Structure),		(Upper In	(Upper Internal Structure),		(Intermediate Heat	
Exchanger),	(Ele	ectro Magnetic	Pump)			
				(Support	Barrel),	(Reactor
Baffle),	(Flow Guide),	(Baffle	e Plate),	(Se	paration Plat	e), (Inlet
Pipe),	(Inlet Plenur	n)				
KALIME	R	;	가			
15cm						

.

(Skirt type)

.

가 / / / . (530 °C) (385 °C) 4 4 • 가 . 가 . 가 . KALIMER (Inlet plenum) 가 5.0cm 702.0cm, 5.0cm 1872.5cm .

> Fig. 1 . 120cm 4 4 . Fig. 3

. 7 / / /

. . .

3.

•

3.1

Fig. 1

KALIMER

.

Fig. 2 Seismic Analysis Model of KALIMER

Grid

•

Table 1. Calculated Spring Constants of KALIMER Reactor Structures

	Nodes	Horizontal Stiffness (N/m)	Vertical Stiffness (N/m)	Torsional Stiffness (N.m/rad)
Separation Plate	30 - 33	0.2728×10^{11}	0.2338x10 ⁹	0.4888x10 ⁷
Baffle Plate	23 – 31	0.6820×10^{10}	0.3653×10^7	0.7637x10 ⁵
Inlet Plenum (Lower Grid Plate)	37 - 52	∞	0.1625×10^{10}	0.4183x10 ⁹
Core Supports	15 – 37	0.6935×10^{11}	0.1464×10^{12}	0.1608×10^8
Flow Guide (Upper Plate)	34 – 38	0.1178x10 ¹¹	0.5732×10^7	0.1119x10 ⁶
EMP Nozzle	30 - 38	0.6222×10^{10}	0.6173×10^{11}	-
Reactor Head	1 - 41	$0.4764 x 10^{11}$	0.11891×10^{10}	0.3859×10^8
Isolation Device	55 - 100	11.8246x10°	21.3714x10 ⁹	∞

가 3.3 Fig. 1

> 가 (9) 가

> > .

.

가

-

$$\begin{bmatrix} m_{1} & 0 \\ 0 & m_{2} \end{bmatrix} \begin{bmatrix} \ddot{x}_{1} + \ddot{x}_{g} \\ \ddot{x}_{2} + \ddot{x}_{g} \end{bmatrix} + \begin{bmatrix} k_{1} & 0 \\ 0 & k_{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} F_{f1} \\ F_{f2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(1)
$$m_{1} \quad m_{2} \qquad , \quad k_{1} \quad k_{2} \qquad x_{1} \quad x_{2} \qquad (1) \qquad 7! \qquad (10)$$

$$\begin{cases} F_{f1} \\ F_{f2} \end{cases} = \begin{bmatrix} \mathbf{a}M_1 & -(1+\mathbf{a})M_1 \\ -(1+\mathbf{a})M_1 & (1+\mathbf{a})M_1 + M_2 \end{bmatrix} \begin{cases} \ddot{x}_1 + \ddot{x}_g \\ \ddot{x}_2 + \ddot{x}_g \end{cases}$$
(2)

$$M_1 = \boldsymbol{r}_f \boldsymbol{p} R_1^2 L , \qquad M_2 = \boldsymbol{r}_f \boldsymbol{p} R_2^2 L \qquad (3, 4)$$

$$\boldsymbol{a} = \frac{R_2^2 + R_1^2}{R_2^2 - R_1^2} \tag{5}$$

_

.

.

$$(3, 4, 5)$$
 r_f , R_1 R_2 , L

7

$$(x_1=0)$$
 7
(1) (2) .
 $(m_1 + \mathbf{a}M_1)\ddot{x}_1 + k_1x_1 = -(m_1 - M_1)\ddot{x}_g$ (6)
 $(R_2 - R_1)$ α

(6)

•

$$7$$
 (, αM_1)
. 7

.

$$D_{f} \equiv \frac{f_{fluid}}{f_{air}} = \sqrt{\frac{m_{1}}{m_{1} + \boldsymbol{a}M_{1}}}$$
(7)

 $\begin{array}{ll} & (6) \\ & , & \boldsymbol{r_f p R_1^2 L} \end{array}$

•

가

 $D_e = \frac{m_1 - M_1}{m_1 + aM_1}$

•

가

(8)

3.4

KALIMER

•

3% (12).

4.

4.1

Table 2KALIMER

	KALIMER		0.5Hz	1	가
			(Fig. 3). 2		1.87Hz
	1	. 3	3.01	Hz	1
	. 4	5.5H	łz		
			. 5	12.33	3Hz
1	2	가	. 6		13.83Hz
	2	. 7	15.2	2Hz	1
	. 8	16.42Hz			
		. 9	1	8.91Hz	1
	. 10	37	.43Hz	2	
2	가				

43.09Hz 52.69Hz

. 0.5Hz

. 가

가 1.5Hz ~ 10.0Hz 가 .

4.2

Table 3

.

1 7.73Hz (Fig. 4). 2 13.69Hz . 3 21.34Hz 56121.3 7 . 4 30.39Hz

,

•

Table 2. Horizontal Modal Analysis Results of KALIMER Reactor Structures

•

Mode	Frequencies	Effective	Mass (kg)	Remarks
No.	(Hz)	Seismic Isolation	Non-isolation	(Mode Shape)
1	0.50	57239.0E3	-	Isolation Mode
2	1.87	849.6	133.9E3	$\operatorname{Core}(1^{\operatorname{st}})$
3	3.00	12.7	14.7E3	UIS(1 st)
Δ	5 50	46.2	622.1E3	$RV(1^{st})+CP(1^{st}):$
-	5.50			in-phase
5	12.33	7.6E-3	2.6E3	$SB(1^{st}), Core(2^{nd})$
6	13.83	1.4E-2	7.7E3	$UIS(2^{nd})$
7	15.22	7.6E-2	59.5E3	$CV(1^{st})$
8	16.42	5.2E-4	0.5E3	$RV(1^{st})+CP(1^{st})$: Out of phase
9	18.91	3.6E-3	6.3E3	$RB(1^{st})$
10	37.43	1.7E-4	4.3E3	$SB(2^{nd})+CP(2^{nd})$
11	41.18	2.4E-5	1.0E3	$UIS(3^{rd})$
12	43.09	9.1E-8	4.7	$FG(1^{st})$
13	45.04	4.2E-4	25.6E3	$RV(2^{nd})$
14	52.69	3.6E-7	40.9	Inlet Pipe(1 st)

Note : CP indicates the components of IHX and EM Pump.

Mode No.	Frequencies (Hz)	Effective Mass (tons)	Remarks (Mode Shape)
1	7.73	171.8	RB+FG
2	13.69	719.7	Core+RV+SB
3	21.34	56121.3	Seismic Isolator
4	30.39	20.3	RH+UIS : In-phase
5	33.60	89.3	RV+SB : in-phase
6	52.50	1.7	IHX
7	58.22	1.2	EMP
8	63.24	1.2	CV
9	94.33	0.05	RV+SB : Out of phase
10	139.8	0.1E-3	RH+UIS : Out of phase

Table 3. Vertical Modal Analysis Results of KALIMER Reactor Structures

Fig. 3 1st Mode Shape of KALIMER (Horizontal)

SB

⁽¹³⁾フト

Fig. 5 Maximum Horizontal Peak Acceleration Responses for Each Node

Node Numbers

Fig. 6 Maximum Vertical Peak Acceleration Responses for Each Node

KALIMER

. Table 4 ,

,

.

.

13.1cm KALIMER 120cm, 27.84cm 50% . (14) 300%

() .

 Table 4
 1.09cm,

 1.83cm
 71

 5
 .

 (Reactivity insertion)

 .

 KALIMER

 Table 4

 7
 7

 83%(OBE
), 56%(SSE
)
 7
 1.1mm

. 2.5cm . 2.0cm . Table 4 SSE 0.164cm, 1.15cm 2.0cm .

,

						Unit : Cm
Design	Load Type	Isolation System		UIS/CORE		RV-RB
Condition		Horizontal	Vertical	Horizontal	Vertical	Horizontal
Seismic	OBE	7.07	7.84E-6	1.09	0.062	0.088
Isolation	SSE	13.1	1.65E-5	1.83	0.108	0.164
Non- Isolation	OBE	-	-	5.98	0.034	0.728
	SSE	-	-	8.85	0.069	1.150

Table 4. Relative Displacement Responses of KALIMER

6.

KALIMER

가

KALIMER

1. H. Shiojiri, T. Matsuda, et.al., "Seismic Isolation for FBR-Preliminary Study," *ASME PVP, Seismic, Shock, and Vibration Isolation-1989*, Vol.181, pp.115-120.

KALIMER

가

가

가

;,

 T. Fujita, S. Suzuki, and T. Yoshizawa, "Experimental Study of Laminated Rubber Bearings for Earthquake Isolation of Buildings," *Transactions of the Japan Society of Mechanical Engineers*, Vol.53, No.485, 1987, pp.71-76.

," 3. , , 1 , 2 2), 1997, pp.79-89. (,, 4. , **KALIMER** • , 1 9), 1999, pp.75-92. 3, (,

5. G.H. Koo, J.H. Lee, B. Yoo, and Y. Ohtori, "Evaluation of Laminated Rubber Bearings for Seismic

Isolation Using Modified Macro-Model with Parameter Equations of Instantaneous Apparent Shear Modulus," *Engineering Structures*, Vol. 21, 1999, pp.594-602.

- 6. Exploring I-DEAS Design, Volume I, II, SDRC, 1998.
- G.H. Koo, J.H. Lee and B. Yoo, "Core Seismic Analysis for a Seismically Isolated LMR," ASME PVP-Vol.379, Seismic, Shock, and Vibration Isolation, 1998, pp.221-227.
- 8. ANSYS User's Manual for Version 5.6, Volume I,II,III, Swanson Analysis Systems, Inc.
- 9. Seismic Analysis of Safety-Related Nuclear Structures and Commentary on Standard for Seismic Analysis of Safety Related Nuclear Structures, American Society of Civil Engineers, 1986, 91 pp.
- 10. R. J. Fritz, "The Effect of Liquids on the Dynamic Motions of Immersed Solids," Journal of Engineering for Industry, ASME, pp.167-173, 1972.
- G.H. Koo, J.H. Lee, and B. Yoo, "Seismic Response Analyses of Seismically Isolated Structures Using the Laminated Rubber Bearings," *Journal of the Korean Nuclear Society*, Vol.30, No.5, 1998, pp.387-395.

12.	,	, ,	KALIMER	, Revision A,"
		, KAERI/TR-15	544/2000, 2000.	
13.	,	, , " KALIN	MER 3	가
	,, ,	, KAE	RI/TR-1065/98, 1998, 35 pp.	
14.	,	, , , , , , , , , , , , , , , , , , , ,		
		," KAERI/TR-809/	97, , 199, 121 pp.	