

Study on Co-free amorphous material cladding using a laser beam to improve the resistance of primary system parts in NPPs to wear/erosion-corrosion.

, ,

2001

1		/			Со	
Co-free		ARMACOR M				
cladding	cladding	/		가		ARMACOR M
cladding	/	가			(Co-free
		NOREM 02, Delo	oro 50			1
		/			Co-	Stellite 6
TIG		/	가			300°C
						cladding
ARMACO	RM	/				
가	,	ARMACOR M	TIG			

Abstract

A study on Co-free amorphous material, ARMACOR M, cladding using a laser beam has been performed to improve resistance of the primary system main parts on nuclear power plants to wear/ erosion-corrosion. The wear /erosioncorrosion properties of the ARMACOR M cladded specimens were characterized in air at room temperature and 300°C, and in air at room temperature, and compared to those of other hardfacing materials, such as Stellite 6, NOREM 02, Deloro 50, TIG-welde or laser cladded. According to the results, ARMACOR M laser-cladded specimen showed to have the highest resistance to wear/erosion -corrosion.

1 1 가 가 1 가 1 가 1 / / Co-Stellite 6 cladding . Co-/ . 가 1 가 Со 1 .(1,2) Со (hardfacing) Costellite Со Co-free 가 .

・ "metamorphic transformation" ^{.(3)}Co Fe-Cr-B , 기

1 1 Fe-Cr-B cladding 가 가 가 Stellite TIG . Stellite NOREM 02 Deloro 50 cladding 가 .

Π.

1.

cladding ARMACOR M, Co-Stellite 6, Fe NOREM 02, Ni Deloro 50 Table

١.

1		1
316	100X50X10 mm ³	³ 100X50X20 mm ³
가	,	mild carbon steel
	. cladding	
, TIG	ARMACOR M Ste	ellite 6

Table 1	Chemical	compositions	of	coating	materials	used in	this	studv
	• • • • • • • • • •		••••					

Table 1 Allov	Cr	Ni	Fe	Со	Mn	Мо	W	V	Si	В	С
(Rod)	31.6	2.8	3.3	Bal.	0.23	-	4.4	-	4.4	-	0.8
ARMACOR M (Powder)	24.4	0.14	Bal.	-	0.12	-	-	-	0.46	2.4	0.1
ARMACOR M (Wire)	26.2	0.15	Bal.	-	1.2				0.50	3.7	0.08
NOREM 02 (Powder)	24.22	4.30	Bal.	0.01	4.08	2.13	-	-	3.19	0.002	1.28
Deloro 50 (Powder)	10.42	Bal.	2.46	-	-	-	-	-	3.90	2.11	0.44

2. cladding TIG

PRC Laser PRC-3500

3.5kW

Q

.

.

 CO_2

, 가

.

cladding Table 2

.

3x3.mm₂

Table 2	lacor	cladding	conditions	for	tho	cladding	materials
Table Z	Laser	clauding	conditions	101	the	cladding	materials

	•	•	•	
Alloy	Overlapping (%)	Powder feed rate(g/min.)	Trverse speed (m/min.)	Laser Power (W)
ARMACOR M	30	13.02	0.6	2100
NOREM 02	30	11.0	0.6	2000
Deloro 50	30	14.94	0.5	1800

Stellite 6	ARMACOR	М			
TIG		316	6	1-2 mm	
	Stellite 6		3.2 mm		
1		,	ARMACOR M	wire	가
1.6 mm	3			. ARM	ACOR
Μ			350°C		

(OM), (SEM), (TEM) SEM/WDX(Wave-dispersive X -, TEM/EDX(Energy Dispersive X-ray Spectroscope) ray Spectroscope) SEM , Stellite 6 CrO₃ 10g , Deloro 50 ARMACOR M 100 ml 95 ml 5 ml 100 ml, NOREM 02 , 5 ml, picric . TEM 4g cladding , 가 20-30 µm가 3 mm

4. 가 500g Cladding vickers 15 block-on-block 27X22X6.1 mm3 6 mm 가 6.2 mm SiC 2000 . 가 Ra 0.02 μm가 . 3mm/sec. 9 mm ,

sliding , 300 ° C , 15 ksi 가 100 .

1

III.

3.

1. cladding TIG 가. Fig. 1 Stellite 6 ARMACOR M TIG , TIG , 가 cladding . , • 가 가 cladding 가 cladding

Fig. 1. Appearance of specimens TIG-welded with (a) ARMACOR M and (b) Stellite 6, and specimens laser-cladded with (c) ARMACOR M, (d) Deloro 50 and (e) NOREM 50

Fig. 2(a) (b) Stellite 6 ARMACOR M TIG

가

1.2 mm, dilution depth Stellite 6 ARMACOR M 1.7 mm dilution depth가 cladding cladding 가 가 (degradation)가 , TIG dilution depth 가 cladding 2(c) (d) cladding cladding dilution , cladding

ARMACOR M 가

가

(Fig. 2(c) (d)),

Fig. 2 Micrographs showing cross-sections of the specimens (a) TIG-welded with stellite 6 and ARMACOR M, and (c) and (d) laser-cladded with ARMACOR M

(d)

(c)

cladding

Fig. 3 Microstructures of ARMACOR M coats formed with (a) TIG welding and (b) laser cladding

(a)

Fig. 4 (a) Bright field TEM micrograph showing microstructure of laser-cladded ARMACOR M. Dark field images and electron diffraction patterns of (b) matrix A, (c) boride B, and boride C in (a).

, (.)	.,				
Fe-Cr	,	Si	가 11.7% 가		Fe-Cr-B
	ARMACOR M			3	
					가
metamorphic		μ m			.(3, 4-6)
Fe-Cr			2		
	"	(solic	state amorphizatio	on reaction)"	
	.(5-10)			,	
가			7	ŀ	

가

elastic mismatch			가	⁽⁷⁻¹⁰⁾ 2	
(11-12)			가		
가				. ARMACOF	R M
	Si	В	가 Fe-Cr	metamorphi	c transformation

cladding	ARMACOR M	l			
			WDX	. Fig	g. 5
ARM	ACOR M			(cladding
	,			. (cladding
dilu		,	(ARMACOR	M)	
(316SS)				가	100 <i>µ</i> m
		De	loro 50	NOREM 02	2
cladding	가				

- 2. 가
 - 가. Fig. 6 TIG
- Fig. 6 TIG cladding . ARMACOR M cladding 가 , cladding Deloro 50, TIG ARMACOR M, cladding NOREM 02, TIG Stellite 6 가 , TIG Stellite 6 ARMACOR M

cladded ARMACOR M and variation coats formed by TIG welding and kaser. In chemical compositions through cladding. the cladded layer

	ARM	ACOR M		
TIG		cl	adding	
가	가 ,			
cladding	ARMACOR M	TIG		dilution
	boride	7	· .	
·				
(1)	300° C			
	15 ksi		300°C	,
				300 ° C
	7	'F		
Stellite	6, ARMACOR M, NO	REM 02, Deloro	50 TIG	
claddin	g			Fig. 7
			ARMACOR M	가
,	TIG		cladding	
		cladding		
dilution	TIG			,
		•		316SS mild
steel(MS)	ARMACC	DR M	cladding	, 316SS
	MS			
		, Ste	llite 6	
	Ni- Delore	50 가		, Fe-
NC	DREM 02			
316 SS	cladding AR	MACOR M	가	

Fig. 7 Total weight losses and friction coefficients of the STL-TIG-SS4*, STL-TIG-SS6, AM-TIG-SS6, AK-LC-SS6, AM-LC-MS, NRM02-TIG-SS4*, NRM02-LC-SS6, DLR50-TIG-SS4*, and DLR50-LC-SS6 specimens, measured at room temperature(* data from ref. 13)

300°C				7	가 Fig. 8		
					316SS		
ARMACOR M	TIG	6	가 가				
	Deloro 50	316 S	S	cladd	ing		
	가			. Fi	g. 7 8		
,		가					
, ARMACO	R M	316SS		300°C			
가	가				ARMACO	RM	
316SS	TIG						
3	ARM	ACOR M					
			,		TIG		

NOREM02

304SS

TIG

Fig. 8 Total weight losses and friction coefficients of the STL-TIG-SS4*, STL-TIG-SS6, AM-TIG-SS6, AK-LC-SS6, AM-LC-MS, NRM02-TIG-SS4*, NRM02-LC-SS6, DLR50-TIG-SS4*, and DLR50-LC-SS6 specimens, measured at 300°C(* data from ref. 13)

Fig. 7 8 가 ARMACOR M 가

stellite 6

가

(2)

Fig. 9

15 ksi

,

1

Specimen

Fig. 9 Total weight losses of the STL-TIG-SS6, AM-TIG-SS6, AM-LC-SS6, AM-LC-SS6, AM-LC-MS, NRM02-LC-SS6, and DLR50-LC-SS6 coatings, measured in water at room temperature.

Table 3 Total weight losses and frictional coefficients of typical specimens

	300					
	D W ₁₀₀ (mg)	m	D W ₁₀₀ (mg)	Ħ	D W ₁₀₀ (mg)	Ħ
STL-TIG-SS4*	0.90	0.33	2.0	0.27	-	-
STL-TIG-SS6	1.0	o.27	5.9	0.27	1.0	-
AM-TIG-SS6	0.3	0.44	149.8	0.52	0.3	-
AM-LC-SS6	0.2	0.47	0.9	0.42	0.1	-
AM-LC-MS	1.6	0.46	1.4	0.44	0.3	-
NRM02-LC-SS6	0.47	0.41	1.44	0.5	0.5	-
NRM02-LC-SS4*	0.60	0.45	Galling	Galling	-	-
DLR50-LC-SS6	83.55	0.47	51.35	0.45	1.4	-
DLR50-LC-SS4*	116.10	0.53	1.80	0.44	-	-

tested in air at room and 300°C, and in water at room temperature

* KEPRI data from reference 13.

IV. *

1			1						
	Co-free AR	MACOR	М		cladding				
								,	
	<i>(</i> 11)								
	(stellite	6, ARMA	ACOR M	, N(DREM 02,	Deloro 50)		
cladding	TIG					316SS	cl	adding	
ARMACOR M		가							
	Stellite 6		1						
NOREM 02	Deloro 50		TIG						
	cladding							가	
	,					フ	ł		

References

- 1. H. Ocken, "Reducing the cabalt inventory in light water reactors", Nuclear Technology 68 (1985) p.18
- 2. H. Ocken, "Co Reduction Guidelines," EPRI NP-6737, March 1990.
- 3. US Patent No. 4725512, 1988.
- 4. H.J. Kim et al., "Characterization of Fe-Cr-B Based Coatings Produced by HVOF and PTA Processes," Metals and Materials, 5 (1999) p.63.
- 5. H.W. Jin et al., "Microstructure and Amorphization induced by Friction Work in Fe-Cr-B

(95ZJ16), 1999.

가,

1