

Abstract

Pipe wall thinning due to erosion-corrosion raises severe plant and personnel safety. Effective inspection program is required to prevent piping failure caused by erosioncorrosion. Chec Family of Codes developed by EPRI was used to predict erosioncorrosion rates in piping components and to calculate the time remaining before reaching user defined acceptable wall thickness. The rate of wear rate depended on water chemistry and design factors. Erosion-corrosion evaluation by codes is to be useful to utilities.

1. - (erosion-corrosion) 가 가 . - (, , ,), (, pH,), (Cr, Cu, Mo)

2001

[1]. 가 (feedwater heater) , (water) 2 (water-wet steam) 2 -[2]. 1986 Surry 2 [3]. EPRI 2 가 Chec Family of Codes [4] 2 . 가 . 2 가 가 -

2.

Chec Family of Codes EPRI

case data form, case segment data form, segment (, tee, elbow, ...) component data form .

2-A.heat balance diagram,P&ID drawings, isometric drawings,,spec.

А . 가 1(b) (1 a). 가 pН case A case B . case A 4 segment case B 6 segment (1c). 1 2

.

. 2 (a), (b), (c)

3.

. 가, pH, , , 가 - 34 - pH 가 9.3 pH 9.0 9.3 . pH - 가

. Tcrit Tcrit

I crit . (e), (v) (r)가 -(p), . (e) 45° 90° Tcrit . 3 s3, s4 s5 segment (e) 가 Tcrit component . 9 . 4 component 가 Tcrit 10000 Tcrit component . 70000 39 component 30 가 Tcrit . 3 Tpred/Tcrit 66600 9 Tcrit 4 Tcrit component . 5 s6, s7 s8 segment component 21 가 Tcrit . 20000 component Tcrit

 パ
 パ

 パ
 パ

 パ
 パ

 1.
 pHフト 9.0
 9.3

2. - 7; , , 7; . 3. . 4. - 7;

.

1.G.Cragnolino, "A Review of Erosion-Corrosion of Steels in High Temperature Water", proc. 3th International Symposium on Environmental Degradation of Materials in Nuclear Power systems-Water Reactors, p397(1987)

2.Water chemistry and Corrosion in the Steam - Water Loops of Nuclear Power Stations, Conf, ADERP, Electricite de France, Seillac, France(1980)

3.C.J. Czajkowski, Metallurgical Evaluation of an 18-Inch Feedwater Line Failure at the Surry Unit 2 Power Station, NUREG/GR-4868, Brookhaven National Laboratory(1987)
4.Chec Family of Codes User's Manual (NSAC/145L)

Case	Amine type	рН	Oxygen(ppb)	No. of hours
А	ammonia	9.00	5	60900
	ammonia	9.30	5	39100
В	ammonia	9.00	5	40600
	ammonia	9.30	5	26000

Table 1. Chemistry history data

Table 2. Design condition for piping segment

Segment	Pressu	ıre(psig)	Temper	ature()	Enthalpy
name	design	operation	design	operation	(Btu/lbm)
s1, s2	400	315.3	390	363	336.14
s3, s4, s5					
s6, s7,	1550	1155.3	450	365	338.83
s8, s9, s10					

Component	Geometry		Thickness	6	Erosio	n Rate	Component	Predicted
Name	Code		(in)		(mils/	/year)	Time to To	crit (hrs.)
		Init.	Pred.	Tcrit	Avg.	Cur.	Tcrit	Inspetion
				S4				
t1	11	0.375	0.254	0.264	16.0	10.3	-8805	
p2	61	0.375	0.302	0.264	9.6	6.2	54453	
e3	2	0.375	0.281	0.264	12.3	7.9	19537	0
v4	22	0.375	0.254	0.264	16.0	10.3	-8805	
p5	58	0.375	0.324	0.264	6.7	4.3	122229	0
e6	2	0.375	0.281	0.264	12.3	7.9	19537	
р7	52	0.375	0.314	0.264	8.0	5.1	86082	
e8	2	0.375	0.281	0.264	12.3	7.9	19537	0
p9	52	0.375	0.314	0.264	8.0	5.1	86082	
e10	2	0.375	0.281	0.264	12.3	7.9	19537	0
r11	17	0.312	0.215	0.211	12.7	8.2	4540	
e12	2	0.312	0.188	0.211	16.3	10.5	-19355	0
p13	52	0.312	0.231	0.211	10.6	6.8	26187	
				S5				
p1	10	0.375	0.254	0.264	16.0	10.3	-8805	
t2	13	0.375	0.254	0.264	16.0	10.3	-8805	
e3	2	0.375	0.281	0.264	12.3	7.9	19537	0
v4	22	0.375	0.254	0.264	16.0	10.3	-8805	
p5	58	0.375	0.324	0.264	6.7	4.3	122229	0
e6	2	0.375	0.281	0.264	12.3	7.9	19537	0
р7	52	0.375	0.314	0.264	8.0	5.1	86082	
e8	2	0.375	0.281	0.264	12.3	7.9	19537	0
p9	52	0.375	0.314	0.264	8.0	5.1	86082	
e10	2	0.375	0.281	0.264	12.3	7.9	19537	0
r11	17	0.312	0.215	0.211	12.7	8.2	4540	
e12	2	0.312	0.188	0.211	16.3	10.5	-19355	О
p13	52	0.312	0.231	0.211	10.6	6.8	26187	

Table 3. Erosion -corrosion calculation data of segment s4 and s5

Component	Geometry		Thickness	5	Erosio	n Rate	Component	Predicted
Name	Code		(in)		(mils/	'year)	Time to To	crit (hrs.)
		Init.	Pred.	Tcrit	Avg.	Cur.	Tcrit	Inspetion
				S7				
p1	57	0.844	0.755	0.684	11.7	7.5	83034	
v2	20	0.844	0.666	0.684	23.4	15.0	-10522	
р3	70	0.844	0.666	0.684	23.4	15.0	-10522	
e4	1	0.844	0.737	0.684	14.0	9.0	51848	
e5	2	0.844	0.707	0.684	18.0	11.5	17422	0
р6	52	0.844	0.755	0.684	11.7	7.5	83034	
e7	2	0.844	0.707	0.684	18.0	11.5	17422	0
р8	52	0.844	0.755	0.684	11.7	7.5	83034	
e9	2	0.844	0.707	0.684	18.0	11.5	17422	0
p10	52	0.844	0.755	0.684	11.7	7.5	83034	
e11	2	0.844	0.707	0.684	18.0	11.5	17422	0
v12	8	0.844	0.666	0.684	23.4	15.0	-10522	
p13	58	0.844	0.769	0.684	9.8	6.3	118675	
e14	2	0.844	0.707	0.684	18.0	11.5	17422	0
p15	52	0.844	0.755	0.684	11.7	7.5	83034	
				S8				
p1	57	0.844	0.755	0.684	11.7	7.5	83034	
v2	20	0.844	0.666	0.684	23.4	15.0	-10522	
р3	70	0.844	0.666	0.684	23.4	15.0	-10522	
e4	1	0.844	0.737	0.684	14.0	9.0	51848	
e5	2	0.844	0.707	0.684	18.0	11.5	17422	0
р6	52	0.844	0.755	0.684	11.7	7.5	83034	
e7	2	0.844	0.707	0.684	18.0	11.5	17422	0
р8	52	0.844	0.755	0.684	11.7	7.5	83034	
e9	2	0.844	0.707	0.684	18.0	11.5	17422	0
p10	52	0.844	0.755	0.684	11.7	7.5	83034	
e11	2	0.844	0.707	0.684	18.0	11.5	17422	0
v12	8	0.844	0.666	0.684	23.4	15.0	-10522	
p13	58	0.844	0.769	0.684	9.8	6.3	118675	
e14	2	0.844	0.707	0.684	18.0	11.5	17422	О
p15	52	0.844	0.755	0.684	11.7	7.5	83034	

Table 4. Erosion -corrosion calculation data of segment s7 and s8

fitle: h5h6 fotal No. Of Oy	crating Hour	s: 1.c+5		
	Chew	listry Hist	ory Data	
Anixe	off value	Oxuoen	No. of Hours	Fmalt
1	9.	5.	68988.	188.
1	9.3	5.	39188.	188.
8	8.	8.	8.	8.
8	8.	8.	8.	8.
8	8.	8.	8.	θ.
8	8.	8.	8.	8.
8	8.	8.	0.	0.
8	8.	0.	8.	8.

Design Conditions For Piping Segment	
Segment Title: c13s1	
Segment Design Pressure(psig): 488.	
Segment Design Temperature(*F): 398.	
Source/Operating Pressure(psig): 315.2998	
Flant Config. Line Tupe(A-K,Z): a	
Flont Config. Line Mumber 1	
Source Enthalou (Btu/lbm) or Quality: -336 14	
Sink Pressure (ncia): 315 2000	
Insulation Thickness (inch): 3.9	
Insulation Thermal Conductivity (Dtucks (ft. *F): 8	
Absolute Bouchass ((ach): 8	

Fig. 1. Data entry forms (a) case data form (b) segment data form (c) component data form

(b)

(c)

(a)

Fig. 2. Plant configuration of A nuclear power plant: (a) plant configuration(b) calculated line (c) segments(s3, s4, s5, s6, s7, s8) of the calculated line

Fig. 3. Tpred/Tcrit ratio of components in segment s3, s4 and s5

Fig. 4. Cumulative no. of components time to Tcrit of segment s3, s4 and s5

Fig. 6. Cumulative no. of components time to Tcrit of segment s6, s7, s8