SCALE SWAT PWR Estimation of PWR Spent Fuel Composition Using SCALE and SWAT Code Systems , Kenya SUYAMA*, Hiroshi OKUNO*

*Japan Atomic Energy Research Institute

ABSTRACT

The isotopic composition calculations were performed for 26 spent fuel samples from Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using SCALE4.4 SAS2H with 27, 44 and 238 group cross-section libraries and SWAT with 107 group cross-section library. For convenience, the ratio of the measured to calculated value was used as a parameter. The four kinds of the calculation results were compared with the measured data. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed the following results. Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from Obrigheim reactor. Larger than unity ratios were found for Am-241 for both the 16 and 55 samples. Larger than unity ratios were found for Sm-149 for the 55 samples. In the case of 26 sample SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor of a system containing PWR spent fuel, taking burnup credit into account.

1.

가 [1-DOE NRC 12], topical report[13] 7 55 . ([14]. 55 , Am-241) SFCOMPO (Spent Fuel COMPOsition database) Obrigheim 26 가 가가 [15-17]. 55 ORNL[11,12] DOE[14] 가 가 , 26 Obrigheim 가 가 SAS2H[18] SWAT[19,20] . ,

.

2.

가. 55

557(Yankee Rowe, Mihama-3, Trino Vercellese, Calvert Cliffs, TurkyPoint. H. B. Robinson, Obrigheim)Table 1..7

, 가 가 .

가 , 가 가 . . , U-238 . , U-238 가

. 26 Obrigheim

Obrigheim Table 2 Table 3 27 SFCOMPO 가 26 . 26 Obrigheim , 가 . Nd-148, Cs-137 Cs-137 . Table 3 Nd-148 . 가 , E3-P2 29.35 GWd/tU Cs-137 , Nd-148 35.10 GWd/tU . Table 2.4 sample ID7 E3-P4, G7-P1, G7-P3 G14-P3(1)

Karlsruhe Ispra . . アト フト . [15] Karlsruhe アト . アト .

3.

가. SAS2H

SAS2H ORIGEN-S[21] BONAMI-NITWAL_II-XSDRNPM-COUPLE [18] . 7¹ 1

 ORIGEN-S
 1000
 PRLIMLWR

 [18]
 Image: COUPLE (18)
 Image: COUPLE (18)

 PRLIMLWR
 (update)
 1

 ORIGEN-S
 Image: Couple (18)
 Image: Couple (18)

.

,

. SWAT

SWAT Fig. 1 SRAC[22], ORIGEN2[23,24], TABMARK[19] LIBMAK[19] JENDL-3.2 [25] . SRAC [26] , LIBMAK ORIGEN2 1 TABMAK ORIGEN2 SRAC input input . 가 step

4. 26 Obrigheim SWAT SAS2H

가. SWAT SAS2H Input

Obrigheim SFCOMPO SWAT input Fortran , SWAT input . 가 ,

SAS2H input SWAT input SAS2H input . SAS2H 7 가 가 가 .

1) SWAT SAS2H 26 . SAS2H 27, 44 238 U-235 . Fig. 2 or4, or10 • . 가, or20-23 or26 가 가 가 . Fig. 3 , . SAS2H U-235, U-238 Pu-240 가 SWAT . Pu-239 Pu-240 4 가 가 .

가 2) U-235 Table 4 . 가 35.1 GWd/tU or4 Cs-137 , 29.35 GWd/tU . Table 4 U-235 , 29.35 GWd/tU . or10 Karlsruhe [15] 가 . or9 . 가 , or10 , . 가 2.83 wt% 가 . 가 . or4, or10 or19-or26 , or1-or3, or5-or9 or11-or18 16 .

3)

•

16 . Fig. 4 Fig. 4 5 SWAT Pu-239, Pu-241, Am-243 Cm-244 , SAS2H . Pu-240, Pu-243, Am-243 7 44 238 Cm-244 SAS2H 27

. Eu-154 , ENDF/B-VI 44 238 가 ENDF/B-V 27 .

가

SWAT SAS2H 5.55

가. SWAT	SAS	2H Input						
55					ORNL	DOE		
		, SAS2H	H 27				input	DOE
	•	27			input	, 44	238	
SWAT	input	SAS2H input	SWAT	input	·			. 55
			가				가	
					가	,		가

			,	SWAT
				input
	SWAT	가 SAS2H		가

• U-235 4 가 Fig. 6 . SWAT ya3, ya4 ro3 , SAS2H 7 , Yankee Rowe SAS2H 가 가 • . Fig. 7 . SWAT SAS2H Pu-240, SWAT SAS2H 가 . Am-242, Am-243, Sm-149 Cs-134 Nd-148 Eu-154 SWAT SAS2H 가 . Fig. 8-9 . Fig. 8 SAS2H 44 238 가 SWAT . . Fig. 9 Se-79, Nd-145, Nd-146 Eu-153 SAS2H SWAT 7

.

6.95 %/95 %

26	Obrigheim	16	55		71	. 71
95 %	nom	mality		•	71	,
	no	ormality test				
Normalit	у			,	,	
					가 normality	
				가		
No	rmality test				mormality	,
	normality	가			가	[27-
29]	95 %	95 %				Table 5
4 2	가		4 가		가	
	, Pu-238, A	Am-242, Am-243,	Cm-244,	Eu-153	Eu-154	
Am-241	Eu-149	가			가	가
0		U-235, I	Pu-239	Pu-241	1.0	,
	1.0					

가

- [1] Department of Chemistry, Dissolution Studies of Spent Fuels, JAERI-M 91-010 (1991).
- [2] L.C. Leal et al., "Automatic Rapid Processing Cross Section Libraries for the Prediction of PWR Spent Fuel Isotopic Compositions," CONF-950420 –13 (1995).
- [3] C. C. Thomas, Spent-Fuel Composition: A Comparison of Predicted and Measured Data, LA-8764-MS (1981).
- [4] J. C. Mailen and J. W. Roddy, "How Well Does ORIGEN Predict Spent LWR Fuel Characteristics ?" CONF-870306 –7, March 1-5, Proc. of Waste Management '87, 1987, Tucson, USA (1987)
- [5] J. W. Roddy and J. C. Mailen, Radiological Characteristics of Light-Water Reactor Spent Fuel: A literature Survey of Experimental Data, ORNL-TM-10105 (1987).
- [6] Allen G. Croff, Comparison of Experimentally Determined Spent-Fuel Comparisons with ORIGEN2 Calculations, Proc. of the 1981 Winter Meeting of the American Nuclear Society (1981).
- [7] Douglas W. Akers, Verification of the ORIGEN2 code Analysis for the TMI-2 Reactor Core, EGG-M –34487 (1989).
- [8] William C. Horak and Ming-Shih Lu, Literature Review of United States Utilities Computer codes for Calculating Actinide Isotope Content in Irradiated Fuel, BNL –52316 (1991).

- [9] H. S. Shin, K, M. Bae, S. G. Ro, D, S, Ku, and I. K, Kim, "Determination of Correction Factors for Conservative Prediction of Spent Fuel Composition," Korea Nuclear Society (1999).
- [10] H. S. Shin, S. G. Ro, K. M. Bae, I. S. Kim and Y. J. Shin, "Application of Burnup Credit for PWR Spent Fuel Storage Pool," JAERI-Conf 99-004(part 1), pp. 68-76 (1999).
- [11] O. W. Hermann, S. M. Bowman, M. C. Brady, and C. V. Parks, "Validation of the Scale System for PWR Spent Fuel Isotopic Composition Analyses," ORNL/TM-12667, Oak Ridge National Laboratory (1995).
- [12] M. D. Dehart and O. W. Hermann, "An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions for PWR Spent Fuel," ORNL/TM-13317 (1996).
- [13] Topical Report on Actinide-only Burnup Credit for PWR Spent Nuclear Fuel Package, Rev. 1, DOE/RW-0472 Rev. 1, U.S. Department of Energy (1997).
- [14] Meraj Rahimi, "Isotopic and Criticality Validation for PWR Actinide-only Burnup Credit," DOE/RW-0497, U.S. Department of Energy (1997).
- [15] Y. Naito et al., Data Book of the Isotopic Composition of Spent Fuel in Light Water Reactors, JAERI-M 94-034 (1994).
- [16] H. Mochizuki and K, Suyama, Improvement of Spent Fuel COMPOsition DataBase System on WWW – SFCOMPO on WWW ver. 2-, JAERI-Date/Code Report on New version SFCOMPO (to be printed) (2000).
- [17] P. Barbero, et al., "Post irradiation analysis of the origheim pwr spent fuel," European Appl. Res. Rept. - Nucl. Sci. Technol., Vol. 2, No. 1, pp. 129-177(1980).
- [18] U.S. Nuclear Regulatory Commission, "SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation," NUREG/CR-0200, Rev.6 (ORNL/NUREG/CSD-2/R6), Vols. 1, 2, and 3, Oak Ridge National Laboratory (1998).
- [19] K, Suyama et al., Improvement of Burnup Code System SWAT for Use in Burnup Credit Problem, in proceeding of PHYSOR 96, Vol. 4, ppL53-62, Mito, Japan, September 16-20(1996).
- [20] K. Suyama et al., "Validatin of SWAT for Burnup Credit Problems by Analysis of PIE of 17x17 PWR Fuel Assembly, the 12th Int. Conf. On the Packaging and Transportation of Radioactive Materials, pp239-244, Paris, France, May 10-15(1998).
- [21] O. W. Hermann and R. M. Westfall, ORIGEN-S : Scale System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Production Buildup and Decay, and Associated Radiation Source Terms, Sect. F7 of Scale, NURGE/CR-0200, Rev. 4, Vol. I.II and III (1990).
- [22] Okumura et al., *SRAC95; General Purpose Neutronics Code System*, JAERI-Data/Code 96-015(1996).
- [23] G. Croff, A User's Manual for the ORIGEN2 Computer Code, ORNL/TM-7175 (1980).
- [24] Croff, ORIGEN-2: A versatile Computer Code for Calculating the Nuclide Compositions and Characteristics of Nuclear Materials, Nucl. Technol., 62, pp335-352 (1983).

- [25] Nakagawa et al., "Japanese Evalulated Nuclear Data Library Version 3 Revision-2: JENDL-3.2," J. Nucl. Sci. Technol., 32, pp1259-1271 (1995).
- [26] K. Tasaka et al., JNDC Nuclear Data Library of Fission Productions second version, JAERI-1320(1990).
- [27] R.E. Walpole and R.H. Myers, *Probability and statistics for engineers and scientists*, 5th, Prentice Hall (1993).
- [28] R, E. Odeh and D. B. Owen, *Table for Normal Tolerance Limits, Sampling Plans, and Screening*, Marcel Dekker, Inc.(1980).
- [29] M. D. DeHart et al., "Validation of a Method for Prediction of Isotopic Concentrations in Burnup Credit Applications," Proc. of the 5th Int. Conf. On Nuclear Criticality Safety, Sept. 17-21, 1995, Albuquerque, USA (1995).

Fig. 1. Flow of Calculation in SWAT.

Fig. 2. Comparison of U-235 Measured-to-Calculated Ratios.

Fig. 3. Relative Errors of U-235 Calculated Compositions against Sample ID.

U-235

Fig. 4. Comparison of the Average Measured-to-calculated Ratios and Standard Deviations.

Fig.5. Comparison of the Average Measured-to-calculated Ratios and Standard Deviations for the large deviation nuclides.

Calculation ID

Fig. 6. Comparison of U-235 Measured-to-Calculated Ratios.

Fig. 7. Relative Errors of U-235 Calculated Compositions.

Fig. 8. Comparison of the Average Measured-to-Calculated Ratios and Standard Deviations for Actinides.

Fig. 9. Comparison of the Average Measured-to-Calculated Ratios and Standard Deviations for Fission Products.

-		Calculation	Enrichment	Burnup	Cooling	Axial	Temperature(°C)		Water	
Reactor	Assembly ID	Sample ID	(U-235 wt%)	(GWd /tU)	Time (d)	Location (cm)	Fuel	Cladding	Coolant	Density (g/cm ³)
	E6-C-f6	ya1	3.400	15.95	281.5	220.22	771.3	559.1	548.7	0.770
	E6-C-f6	ya2	3.400	30.39	717.0	138.94	889.5	560.2	540.8	0.783
	E6-C-f6	ya3	3.400	31.33	281.5	57.66	876.6	550.8	531.7	0.797
Yankee	E6-C-f6	ya4	3.400	20.19	281.5	17.02	787.1	540.6	528.0	0.803
rowe	E6-SE-c2	ya5	3.400	32.03	281.5	138.94	889.5	560.2	540.8	0.783
	E6-SE-c2	ya6	3.400	31.41	281.5	57.66	876.6	550.8	531.7	0.797
	E6-SE-e4	ya7	3.400	35.97	281.5	138.94	889.5	560.2	540.8	0.783
	E6-SE-e4	ya8	3.400	35.26	281.5	57.66	876.6	550.8	531.7	0.797
	86b02	mi1	3.208	8.30	1825	-	923.0	600.4	560.4	0.752
	86b03	mi2	3.208	6.92	1825	-	863.0	633.6	593.6	0.679
	86g05	mi3	3.208	15.36	1825	-	823.0	611.7	71.7	0.730
	86g03	mi4	3.203	21.29	1825	-	933.0	625.4	585.4	0.700
Mihama-3	86g07	mi5	3.203	14.22	1825	-	863.0	600.3	560.3	0.755
	86c03	mi6	3.203	29.50	1825	-	863.0	600.3	560.3	0.752
	87c04	mi7	3.210	32.20	1825	-	891.0	607.0	567.0	0.739
	87c07	mi8	3.210	33.71	1825	-	905.0	600.8	560.8	0.751
	87c08	mi9	3.210	34.32	1825	-	913.0	625.9	585.9	0.698
	509-104-M11-7	tr1	3.897	12.04	10	79.2	001.0	570.0	543.0	0.780
	509-032-E11-4	tr2	3.130	15.38	10	158.5	015.0	570.0	557.0	0.755
	509-032-E11-7	tr3	3.130	15.90	10	79.2	001.0	570.0	543.0	0.780
	509-032-E11-9	tr4	3.130	11.53	10	26.4	927.0	570.0	537.0	0.789
	509-069-E11-1	tr5	3.130	12.86	10	237.7	915.0	570.0	563.0	0.737
	509-069-E11-2	tr6	3.130	20.60	10	211.3	968.0	570.0	561.0	0.741
Trino	509-069-E11-4	tr7	3.130	23.72	10	158.5	015.0	570.0	553.0	0.755
Vercellese	509-069-E11-7	tr8	3.130	24.30	10	79.2	001.0	570.0	540.0	0.780
	509-069-E5-4	tr9	3.130	23.87	10	158.5	015.0	570.0	553.0	0.755
	509-069-E5-7	tr10	3.130	24.55	10	79.2	001.0	570.0	540.0	0.780
	509-069-L11-4	tr11	3.130	23.93	10	158.5	015.0	570.0	553.0	0.755
	509-069-L11-7	tr12	3.130	24.36	10	79.2	001.0	570.0	540.0	0.780
	509-069-L5-4	tr13	3.130	24.33	10	158.5	015.0	570.0	553.0	0.755
	509-069-L5-7	tr14	3.130	24.31	10	79.2	001.0	570.0	540.0	0.780
	D047-MKP109	ca1	3.038	27.35	1870	13.2	922.0	595.0	570.0	0.731
	D047-MKP109	ca2	3.038	37.12	1870	27.7	922.0	595.0	570.0	0.731
	D047-MKP109	ca3	3.038	44.34	1870	165.22	922.0	595.0	570.0	0.731
Calvert	D101-MLA098	ca4	2.720	18.68	2374	9.10	922.0	595.0	570.0	0.731
Cliffs	D101-MLA098	ca5	2.720	26.62	2374	24.50	922.0	595.0	570.0	0.731
Units 1	D101-MLA098	ca6	2.720	33.17	2374	161.90	790.0	620.0	557.0	0.757
	BT03-NBD107	ca7	2.453	31.40	2447	11.28	841.0	620.0	558.0	0.757
	BT03-NBD107	ca8	2.453	37.27	2447	19.92	873.0	620.0	570.0	0.733
	BT03-NBD107	ca9	2.453	46.46	2447	161.21	816.0	620.0	557.0	0.758
	D01-G9	tk1	2.556	30.72	927	-	880.0	620.0	558.0	0.757
	D01-G10	tk2	2.556	30.51	927	-	910.0	620.0	570.0	0.734
Turkey	D01-H9	tk3	2.556	31.56	927	-	790.0	620.0	557.0	0.758
point 3	D04-G9	tk4	2.556	31.26	927	-	841.0	620.0	557.0	0.758
	D04-G10	tk5	2.556	31.31	927	-	873.0	620.0	570.0	0.758
	N-9B-S	ro1	2.560	16.02	3936	-	743.0	595.0	559.0	0.687
Н. В.	N-9B-N	ro2	2.560	23.81	3936	-	830.0	595.0	559.0	0.687
Rorinson	N-9C-J	ro3	2.560	28.47	3631	-	883.0	595.0	576.0	0.656
	N-9C-D	ro4	2,560	31.66	3631	-	923.0	595.0	579.0	0.650
	170-94	or1	3,130	25.93	10	-	846 0	605.0	572.0	0.728
	172-92	or?	3,130	26.54	10	-	841 0	605.0	572.0	0.728
	176-91	or3	3,130	27.99	10	-	849 0	605.0	572.0	0.728
Orrigheim	168-86	0h4	3,130	28.40	10	-	859 0	605.0	572.0	0.728
	171-89	0b5	3,130	29.04	10	-	867 0	605.0	572.0	0.728
	176-90	or6	3.130	29.52	10	-	771.3	560.2	540.8	0.783
								200.2	2.0.0	

Table 1. Operating Parameters for 55 Spent PWR Fuel Samples

Design Specification	Value
Fuel Rod	
-Pellet Density	10.422 g/cm^3
-Pellet Diameter	0.9040 cm
-Cladding ID	0.9318 cm
-Cladding OD	1.0760 cm
-Pitch	1.4300 cm
Assembly	
-Rod No	180
-Array	14 x 14
-Inlet/Outlet Coolant	283/313 °C
Temperature	

Table 2. Design Specifications for Origheim Spent Fuel

Table 3. Operating Parameters for 26 Obrigheim Samples

Calculatio n Sample ID	Sample ID	Measurement	Enrichment (U-235	Burnup	Axial Location	Temperature(°C)		°C)
	···· F	Institute	wt%)	(GWd /tU)	(cm)	Fuel	Claddin	Coolan
							g	t
orl	D1-P1	Karlsruhe	3.00	21.17	15.0	900.0	600.0	556.3
or2	D1-P3	Ispra	3.00	33.75	143.5	900.0	600.0	570.5
or3	E3-P1	Ispra	3.00	20.18	15.0	900.0	600.0	556.3
or4	E3-P2	Karlsruhe	3.00	35.10	31.5	900.0	600.0	557.0
or5	E3-P3	Ispra	3.00	36.26	143.5	900.0	600.0	570.5
or6	E3-P4	Ispra	3.00	30.89	231.5	900.0	600.0	582.8
or7	E3-P4	Karlsruhe	3.00	30.94	231.5	900.0	600.0	582.8
or8	E3-P5	Ispra	3.00	22.86	258.5	900.0	600.0	585.0
or9	G7-P1	Ispra	3.00	17.13	15.0	900.0	600.0	556.3
or10	G7-P1	Karlsruhe	3.00	22.70	15.0	900.0	600.0	556.3
or11	G7-P2	Ispra	3.00	25.83	31.5	900.0	600.0	557.0
or12	G7-P3	Ispra	3.00	31.50	143.5	900.0	600.0	570.5
or13	G7-P3	Karlsruhe	3.00	31.14	143.5	900.0	600.0	570.5
or14	G7-P4	Ispra	3.00	27.71	231.5	900.0	600.0	582.8
or15	G7-P5	Karlsruhe	3.00	25.81	258.5	900.0	600.0	585.0
or16	M14-P1	Karlsruhe	3.00	15.60	15.0	900.0	600.0	556.3
or17	M14-P3	Ispra	3.00	29.36	143.5	900.0	600.0	570.5
or18	M14-P4	Karlsruhe	3.00	24.90	231.5	900.0	600.0	582.8
or19	G14-P3(1)	Ispra	2.83	38.10	132.8	900.0	600.0	568.8
or20	G14-P3(1)	Karlsruhe	2.83	36.88	132.8	900.0	600.0	568.8
or21	G14-P4(1)	Ipara	2.83	35.64	220.6	900.0	600.0	581.6
or22	G14-P5(1)	Ispra	2.83	30.16	242.6	900.0	600.0	583.8
or23	G14-P5(2)	Ispra	2.83	24.22	254.7	900.0	600.0	584.8
or24	K14-P1	Ispra	2.83	25.45	15.0	900.0	600.0	556.3
or25	K14-P3(1)	Ispra	2.83	36.67	132.8	900.0	600.0	568.8
or26	K14-P4(1)	Karlsruhe	2.83	32.90	220.6	900.0	600.0	581.6

* Cooling Time: 0.0 day

*Cooling Water Density:

-SAS2H: 0.8238 g/cm³

-SWAT: water density, corresponding to the coolant temperature, is calculated in SWAT.

	Le corre	nerm epene	Tuer eampres	5				
Sample	Enrich-	Axial-	Burnup	Exp. Data	(CalExp.)/Ex		o.)/Exp.	
Id	ment	Location	(GWd/tU)	(g/1tU,		SAS2H	1	SWAT
	(wt%)	(cm)		Initial)	27 G	44 G	238 G	107 G
Or23	2.830	254.7	24.220	8.940E+03	9.351	9.620	11.454	11.857
or24	2.830	15.00	25.450	1.000E+04	-7.880	-8.110	-6.470	-8.830
or22	2.830	242.6	30.160	6.270E+03	16.571	16.938	19.569	19.522
or26	2.830	220.6	32.900	5.040E+03	26.369	26.369	30.099	28.849
or21	2.830	220.6	35.640	4.950E+03	11.576	11.576	15.374	13.798
or25	2.830	132.8	36.670	4.860E+03	7.840	6.872	10.741	6.008
or20	2.830	132.8	36.880	4.410E+03	17.234	16.712	20.975	15.488
or19	2.830	132.8	38.100	5.050E+03	-3.663	-4.594	-0.871	-5.743
or16	3.000	15.00	15.600	1.570E+04	1.338	1.338	1.911	1.720
or9	3.000	15.00	17.130	1.520E+04	-1.974	-1.842	-1.184	-1.645
or3	3.000	15.00	20.180	1.280E+04	2.109	2.109	2.969	2.031
or1	3.000	15.00	21.170	1.370E+04	-8.759	-8.759	-7.737	-8.832
or10	3.000	15.00	22.700	1.440E+04	18.889	18.889	17.917	19.167
or8	3.000	258.0	22.860	1.190E+04	-2.437	-2.269	-1.092	-0.420
or18	3.000	231.0	24.900	1.030E+04	2.718	2.913	4.466	4.757
or15	3.000	258.0	25.810	1.010E+04	0.495	0.792	2.376	2.772
or11	3.000	31.00	25.830	1.080E+04	-6.204	-6.389	-4.907	-6.944
or14	3.000	231.0	27.710	1.010E+04	-8.089	-7.861	-6.228	-6.099
or17	3.000	143.0	29.360	8.780E+03	-2.301	-2.301	-0.159	-1.970
or6	3.000	231.0	30.890	7.480E+03	6.818	6.818	9.332	9.064
or7	3.000	231.0	30.940	7.840E+03	1.620	1.620	4.018	3.814
or13	3.000	143.0	31.140	7.500E+03	5.280	4.973	7.480	5.147
or12	3.000	143.0	31.500	7.610E+03	1.905	1.603	4.074	1.787
or2	3.000	143.0	33.750	6.930E+03	0.043	-0.303	2.756	-0.216
or4	3.000	31.00	35.100	8.440E+03	23.152	23.709	21.481	25.616
or5	3.000	143.5	36.260	6.090E+03	0.722	-0.049	3.415	-0.263

Table 4. U-235 Relative errors of SAS2H and SWAT Calculated Compositions in the Case of 26 Obrigheim Spent Fuel Samples

ſ		Tolerance		Correction Factor				
	Nuclide	Limit	Data#		SAS2H		SWAT	
		Factor		27 G	44 G	238 G	107 G	
Ī	U-234	2.292	25	0.7386	0.7548	0.7581	0.7472	
Ī	U-235	1.987	71	1.1057	1.1047	1.0749	1.1091	
Ī	U-236	1.987	71	0.9103	0.9116	0.9140	0.9519	
	U-238	2.005	65	0.9919	0.9918	0.9923	0.9920	
	Np-237	2.671	13	0.6435	0.7173	0.7485	0.7462	
	Pu-238	2.060	51	0.7905	0.8404	0.8516	0.9830	
	Pu-239	1.987	71	1.0901	1.1166	1.0819	1.1104	
	Pu-240	1.987	71	0.9864	0.9433	0.9274	0.9407	
	Pu-241	1.987	71	1.1145	1.1858	1.1484	1.1984	
	Pu-242	1.999	67	0.8986	0.8166	0.8113	0.8882	
	Am - 241	2.371	21	0.0000	0.0000	0.0000	0.0000	
	Am - 242	3.187	8	0.5196	0.5946	0.5793	0.9371	
	Am-243	3.187	8	0.5205	0.4822	0.4727	0.7937	
	Cm-242	2.220	30	0.4265	0.4974	0.4863	0.4665	
	Cm-244	2.208	31	0.7302	0.6135	0.5742	0.8561	
	Se-79	3.031	9	0.6218	0.6204	0.6197	0.7174	
	Sr-90	3.031	9	0.9387	0.9371	0.9406	0.9308	
	Tc-99	2.671	13	0.5931	0.5919	0.5820	0.5623	
	Ru-106	5.144	4	0.7161	0.7200	0.7140	0.7180	
	Sn-126	3.708	6	0.1405	0.1396	0.1392	0.1279	
	I-129	7.656	3	0.6838	0.7162	0.6845	0.7592	
	Cs-133	7.656	3	0.9399	0.9177	0.9027	0.9092	
	Cs-134	2.275	26	0.7727	0.8013	0.8238	0.8056	
	Cs-135	3.031	9	0.8513	0.9019	0.8883	0.9036	
	Cs-137	2.158	36	0.9318	0.9317	0.9317	0.9394	
	Ce-144	5.144	4	0.8669	0.8669	0.8773	0.8759	
	Nd-143	7.656	3	0.9591	0.9719	0.9576	0.9759	
	Nd-144	7.656	3	0.9869	0.9690	0.9869	0.9863	
	Nd-145	7.656	3	0.9845	0.9774	0.9807	0.9828	
	Nd-146	7.656	3	0.9884	0.9797	0.9873	0.9955	
	Nd-148	2.524	16	0.9661	0.9671	0.9658	0.9519	
	Nd - 150	7.656	3	0.8992	0.8992	0.8992	0.8855	
	Sm - 148	7.656	3	0.9619	0.9862	1.0248	0.7183	
	Sm-149	7.656	3	0.0000	0.0000	0.0000	0.0000	
	Sm - 150	7.656	3	0.6426	0.6403	0.6436	0.6965	
	Sm - 152	7.656	3	0.5571	0.5620	0.7353	0.6010	
	Eu-153	7.656	3	0.6654	0.5664	0.5699	0.6714	
ſ	Fu-154	2 423	19	0.3806	0 7385	0 7168	1 0064	

Table 5. Correction Factors for 38 nuclides