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Abstract

Since the law[1] for Large Break Loss of Coolant Accident(LB-LOCA) has been revised to
alow the use of the Best-Estimate(BE) Methodology, The U.S. Nuclear Regulatory Commission(NRC)
issued two independent positions for the old conservative evaluation model[2] and for the BE evauation
model[3] respectively. In this paper, by scrutinizing the U.S. regulatory position and the related
studies[4,5], it is shown that a consistent regulatory principle is kept in both methodology. Following this
principle, a methodology can be suggested to select a certain code model or correlation and to quantify
their ranges for the concerned important uncertain phenomena or process. The key point of the BE-
methodology is that the identified important phenomena or processes are to be evaluated to quantify the
uncertainties in the LB-LOCA scenario, instead of evaluating the individual models and correlations. In
doing so, however, a certain model or group of models should be selected and their uncertainties should
be quantified. But, their role should be understood as the ‘ representative’ parameters for the concerned
phenomena or processes. Accordingly, the range of the selected uncertainty parameter should be
confirmed based on the well-scaled experiments. With the above viewpoint, some solutions are suggested

for the many questions[6] concerning the TRAC-CSAU[5] methodology.

1.
TRAC-CSAU , ;
-1 , TRAC-CSAU
TPG group[6] . TRAC-CSAU
, 7 -
“ >

TPG group ;
“It is not possible nor necessary to address each potential source of uncertainty in an equal manner.
One of the strengths of the methodology is its ability, based on expert evaluation of experimental
evidence, to prioritize the sources of uncertainty for further analysis and treat them accordingly”
TRAC-CSAU [5] NUREG-1230[4]
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Appendix-K top-down approach

NUREG-1230[4] ;

“Because extensive directly applicable experimental data did not yet exist in 1972 for use in
computer code development or in assessing the predictive capabilities of these codes for key portions of
the Light Water Reactor (LWR) response to LOCAS, large uncertainties existed in predictions of these
transients. Accordingly, sufficiently conservative assumptions were used in developing 50.46 and
Appendix-K in 1974 to provide assurance that Emergency Core Cooling System(ECCYS) criteria would be

satisfied even in the unlikely event that worst-case uncertainties prevailed.”
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“There can be two method to evaluate a best estimate code. In the bottom-up approach, each
model and all the closure relations in a code are examined and assessed in a uniform function. Sensitivity
studies are performed on every single model to assess its effects on calculated results. Although this
approach is rigorous, it is definitely impractical in view of the number of calculations that would be
required.

In the top-down approach, one identifies significant phenomena that have influence on the overall
results for a scenario or for a distinct class of scenarios. The capability of the code to calculate these
significant phenomena is assessed against test data. Finally, senstivity studies are performed on
parameters and/or models that affect the significant phenomena. It is evident that the top-down approach
has several attractive features, for example, the reduced number of sensitivity calculations. However, it
still has important shortcomings, that is, it does not offer a method to address the questions related to
scaling and to compensating errors among others. CSAU method, which removes these and other
shortcomings ..”
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TRAC-CSAU phenomena/process identification and ranking

-1 break discharge coefficient, fuel parameters, heat
transfer coefficient, minimum boiling temperature, pump, steam binding, ECC bypass, dissolved nitrogen
heat transfer coefficient minimum boiling temperature , Stored energy
and fuel response clad surface heat
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fuel response
, Appendix-K fuel response no return
to nucleate, no return to transition boiling, hot channel to be less than one assembly size, FLECHT
correlation to be used for 1 in/sec, steam cooling to be used for 1 in / sec required
features ( -2 ).

, Reg. Guide Position 4.2 (
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“Code uncertainty should be evaluated through direct data comparison with relevant integral
systems and separate effects experiments at different scales. In this manner, an estimate of the uncertainty
attributable to the combined effect of the models and correlations within the code can be obtained for all
scales and for different phenomena. Comparisons to a sufficient number of integral systems experiments
from different facilities and different scales, should be made to ensure that a reasonable estimate of code
uncertainty and bias has been obtained.....”
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-1. TRAC-CSAU

No. Questions on
1 Generality of CSAU
2. Practicality of CSAU
3 Use of Engineering Judgement in application of CSAU
4 Use of Biasesin application of CSAU
5 Use of frozen Code Version having Model Deficiency
6 Quantification of uncertainty introduced by user controlled Variations, particularly Nodalization
7 Elimination of many thermal-hydraulic phenomena as sources of Uncertainty
8 Validity of comparing the CSAU resultsto the world’ s PCT data bases
9 Validity of the Use of Supplemental Fuel Rods
10 Scalability of Code
11 Statistics
-2. Appendix-K Required Featuresand TRAC-CSAU
Phenomena/Pr ocesses Required features TRAC-CSAU
Uncertainty Parameters
A. Sources of Heat A. Decay Heat; ANS-71 plus 20% Peaking factor
B. Fuel Rod Model B. Swelling and rupture
Gap conductance Gap conductance
C. Blowdown Phenomena C. Blowdown Phenomena
1. Break Flow 1. Break Flow Dischar ge coeff.
a. spectrum a. spectrum
b.discharge model b. Moody Model
c.EOB c. EOB ECC bypass
d.Noding near break d. Split break
2. Frictional Pressure Drop Realistic Frictional Pressure Drop
3. Momentum Equation Momentum Equation
4. Critical Heat Flux Noreturn to Nucleate Tmin

5. Post-CHF HT Correlation

6. Pump Modeling Two-phase Pump Data

7. Core Flow Distribution . Hot Channel<One Assembly Size
D. Post-Blowdown Phenomena | D. Post-Blowdown Phenomena

1. Single Failure Criterion Single Failure Criterion

2. Containment Pressure Minimum Back Pressure

3. Reflood rate calculation High entrainment rate

4, Steam condensation No condensation at pipes

5.RF H.T and steam cooling FLECHT correlation > 1in/sec
Steam cooling < 1 in/sec

No return to Transition Boiling

Nookrwd

agrLONE

Heat Transfer Coeff
Pump Degradation

Steam binding
Tmin
Heat Transfer Coeff

-3. Summary of Regulatory Guide 1.157
Regulatory Position 1; General Attributesin Best-Estimate Calculations

Best-Estimate Model; realistic calculation of experiment predict mean value of experiments
Unaccounted-for Model; treated as a bias in overall uncertainty do not include the bias in the analysis
Range of Models; use within the applicable range if extrapolated, uncertainty evaluation

Best-Estimate Code; predict the important phenomena

SET and IET; determine overall uncertainty and bias/ |ET; confirmation of Best-Estimate Code
Conservatism; simplification leads little or no effect; only upper bound of model is known

Biasis acceptable
Regulatory Position 2; Special Considerations for Best-Estimate Cal culations
NUREG-1230 Compendium guides the Best Estimate M ethodol ogy




Uncertainties of features; included in overall uncertainty calculation
2.1 Basic Structure of Codes
2.1.1 Numerical Methods; Noding Sensitivity to be done
2.1.2 Correlational Models
Regulatory Position 3; Best-Estimate Code Features
3.1 Initial and Boundary Condition and Equipment Availability
3.2 Sources of Heat During a LOCA
3.3 Fuel Rod Parameters
3.4 Blowdown Phenomena
3.4.1 Break Characteristics and Flow /3.4.2 ECC Bypass
3.5 Noding near the Break and ECCS injection Point
3.6 Frictional Pressure Drop
3.7 Momentum Equation
3.8 Critical Heat Flux
3.9 Post-CHF blowdown Heat Transfer
3.10 Pump Modeling
3.11 Core Flow Distribution During Blowdown
3.12 Post-Blowdown Phenomena
3.12.1 Containment Pressure
3.12.2 Calculation of PB Th for PWR
3.12.3 Steam Interaction with ECC in PWR
3.12.4 Post Blowdown Heat Transfer for PWR
3.16 Other Features
3.16.1 Compl eteness
BE code should be complete
3.16.2 Data Comparisons
Individual Models should be compared with Experiments
Regulatory Position 4; Estimation of Overall Calculation Uncertainty
4.1 General;
Definition of Uncertainty;
Code Uncertainty; Combined uncertainty accounting the individual models and correlations
Overall Calculation Uncertainty;
Code Uncertainty Plus Uncertainties from the Various Sources
A completely rigorous mathematical treatment is neither practical nor required.
Approximations and assumptions
4.2 Code Uncertainty
Evaluated by direct comparison with relevant IET’ sand SET’ s
Separate Uncertainties for Blowdown and Reflood
Justification of separate uncertainty treatment
4.3 Other source of Uncertainty
4.3.1 Initial and Boundary Conditions and Equipment availability
4.3.2 Fuel Behavior
4.3.3 Other Variables
4.4 Statistical Treatment of Overall Calculation Uncertainty

-4. Bottom-up and top-down approach for code evaluation

Approach | Range of assess | Sensitivity range Merits Demerits

Bottom-up | Single model Every single model | rigorous impractical

Top-down | Phenomena Parameter affecting | economic Scaling error
phenomena Compensating error
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