(SCAN) Development and Application of CANDU-PHWR Neutronics Design Code SCAN

Abstract

SCAN(<u>SNU CANDU-PHWR Neutronics Code</u>) code based on three-dimensional full two-group diffusion theory model is developed and validated against RFSP(Reactor Fuelling Simulation Program) code made for CANDU reactors. We analyzed the phase B reactor physics test cases of Wolsong unit 3 by the SCAN code and compared the SCAN analysis with the corresponding RFSP analysis and the Wolsong unit 3 physics test measurements. We showed that the SCAN code could predict the effective multiplication factor and power distributions as accurately as the RFSP code. We also showed it to be the 3.5 times faster in computational speed and the better flux convergence than the RFSP. And we showed that SCAN calculations are better against RFSP analysis of reactivity worth of control devices.

2001

BICG-ST	AB(Bi Conjugate	Gradient Stabilization)	,	outer iteration	Two-p	arameter
Chebyshev	Wielandt	[3][4]	SOR/Two-	parameter Chebyshev		
			SCAN	가		
SCAN	•	(OOP)	C++		,	가
가	HP Unix	Linux, Windows			가	
	가					
1		WIMS-AECL	,	N	IULTICE	LL
SCA	AN					

3. CANDU-PHWR

2	CANDU-6 가	[5]	380	가.
		14	(LZC	U, Liquid Zone
Control Unit), 21	(ADJ, Adju	ster rod), 4	(MCA, Mechanical Contr	ol Absorber)
28 (SOI	R, Shut-Off Rod)			(LPI,
Liquid Poison Inject	ion nozzle) 가	. SCAN		
		2		

•

3	RFSP					
42 ,		34				notch
		notch				
	,		42×34×20		•	
RFSP		44×36×22		,		
21,696						

4.

SCAN			3	Phase-B	(Phas	se-B Post Simu	ılation) ^{[6][7]}
95가		.(1)				
	'Phase-B'	가			0.1% F	ΤP	
		95가		SCAN	RFSP	1.5	2
3				Pha	ase-B Post Simu	lation	
a.		・ 가 [mk/ppm]					
b.				[ppm]			

c. ADJ, MCA, SOR		가 [mk/unit]
d.	가 [mk/]	

5.

2 SCAN RFSP 1.5 2 (K_{eff}) 95 . SCAN RFSP 1.5 2 가 0.9 pcm 가 128 pcm 1.5 2 WIMS-AECL . 3 SCAN 가 RFSP 3.5 ~ 5 4 • RFSP OCON . OCON (Average relative flux differences 가 RFSP between iteration steps) SCAN , 4 가 8가 5 ADJ Bank OCON SCAN 가 RFSP 7 1.5 2 6 <B6> 가 1.5 0.07%, 2 0.02% 가 8 9 3 8 . 가 SCAN RFSP 2 1.5 가 , 가 WIMS-AECL 2 1.5 2 가 8.30 ppm, 8.13 • 8.93 ppm ppm 9 가 , SCAN 가 RFSP 가 2 가 1.5 . WIMS-AECL 가 35 ~ 69 1mk . ,

,

가

.

		SO	CAN(<u>S</u> NU <u>C</u>	<u>A</u> NDU-PHV	VR <u>N</u> eutronics Co	de)
3	Phase-B				. SCAI	N RFSP
					, 가	
	가	3.5				
			가	SCAN	가 RFSP	
,	2	가 1.5				
	가			2 1.5		가
WIMS-AECL						
		가	RFSP	Time-av	verage module	
WIMS-AECL			,			
					MCNAP (Monte	Carlo depletion code of
SNU)					SCAN	
					,	
(in-core flux map)	ping)					

1. B. Rouben, "Reactor Fuelling Simulation Program-RFSP: Program Description for Microcomputer Version", TTR-370, 1992 December.

•

- 2. J. Griffiths, "WIMS-AECL Users Manual", RC-1176, AECL, 1994.
- I.S. Hong, C.H. Kim, B.J. Min, H.C.Suk, "Three Dimensional Two Group Finite Difference Diffusion Equation Solver for CANDU-PHWR Analysis, FDM3D", 21st Annual Canadian Nuclear society Conference, Toronto, CANADA, 2000 June 11-14.
- 4. J.R. Shewchuk, "An Introduction to the Conjugate Gradient Method Without the Agonizing Pain", School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 (August 4, 1994).
- 5. "CANDU6 Generating Station Physics Design Manual", Wolsong NPP 234, 86-03310-DM-000, 1995.
- I.S. Hong, C.H. Kim, B.J. Min, H.C. Suk and B.G. Kim, "Validation of WIMS-AECL With ENDF/B-F Against Phase-B Reactor Physics Tests at Wolsong Units 2 and 3", Proceedings of the 6th International Conference on CANDU Fuel, Vol 1, pp.40-51, September 26-30, Niagara, CANADA, 1999.

7.	,	,	, "W	IS-AECL/(MULTICELL)/RFSP	Phase-B Test Results
			(2) ", KAERI/TR -1419/99, 1	1997.

6.

1 Brief Description for Benchmark Test Problems

Problem Type	Number of Cases	Meaning of Symbol #	Device Condition	Problem Usage
<b#></b#>	6	Boron Concentration	Normal(ADJ in, SOR out, MCA out)	Boron reactivity worth estimation
<guesscb></guesscb>	1	-	- MCA04 inserted 55% vertically, Other devices Normal	
<zl#></zl#>	11	# [%] of Average Zone Controller Level	Normal	Zone level worth estimation
<adj#></adj#>	22	ADJ rod Unit Number	ADJ# out, Other devices Normal	ADJ rod worth calculation
<mca#> <sor#></sor#></mca#>	5 29	MCA unit number SOR unit number	MCA# or SOR# out, Other devices Normal	MCA and SOR worth calculation
<mt#></mt#>	8	Moderator Temperature	Normal	MTC calculation

* Additional 13 cases for ADJ bank and MCA bank calculations

2~ Average ${\rm K}_{\rm eff}~$ Differences for 95 Test Cases

	Average K _{eff} difference
SCAN1.5 – RFSP1.5	0.008mk (0.76 pcm)
SCAN2 – RFSP2	0.009mk (0.88 pcm)
RFSP2 – RFSP1.5	1.280 mk (128.03 pcm)
SCAN2 – SCAN1.5	1.286 mk (128.55 pcm)

3	Comparison	of	Time
---	------------	----	------

	N. C	1.5 Group			2 Group			
Problem	Num of Cases	SCAN [s]	RFSP [s]	SPEED UP FACTOR	SCAN [s]	RFSP [s]	SPEED UP FACTOR	
B6	1	21	332	15.91	21	97	4.68	
B7	1	17	124	7.15	17	135	7.83	
B8	1	3	103	29.60	4	112	29.78	
B9	1	14	150	10.57	17	82	4.73	
B10	1	21	131	6.27	21	99	4.78	
B11	1	21	96	4.59	21	88	4.22	
Guesscb9	1	28	144	5.14	28	72	2.55	
ZC0~ZC100	11	206	1667	8.08	201	908	4.51	
ADJALL	22	534	2501	4.69	529	1715	3.24	
ADJBNKALL	8	147	729	4.97	153	530	3.48	
MCAALL	5	159	597	3.75	159	482	3.03	
MCABNKALL	5	166	668	4.03	167	543	3.24	
SORALL	29	908	3889	4.28	896	2796	3.12	
MTALL	8	136	650	4.76	143	767	5.36	
TOTAL	95	2381	11781	4.95	2378	8426	3.54	

4 Comparison of Convergence of SCAN and RFSP in terms of OCON

	1.5 G	roup	2 Group		
	SCAN	RFSP	SCAN	RFSP	
Average OCON	3.000E-06	6.838E-06	2.991E-06	7.840E-06	

*
$$OCON = \frac{1}{M} \sum_{m=1}^{M} \left| \frac{\sum_{g=1}^{2} (\Phi^{m, g^{t+1}} - \Phi^{m, g^{t}})}{\sum_{g=1}^{2} \Phi^{m, g^{t}}} \right|$$
, Converting

Convergence Criterion = max. relative flux error = 1.0e-5

5 Flux Convergence Characteristics

RFSP1.5G				
Flux Convergence Criterion	TIME	Total NITER	Comment	OCON
2.00E-05	747	1461	-	8.48574E-06
1.00E-05	839	1822	-	3.75590E-06
8.00E-06	851	1936	-	3.10903E-06
5.00E-06	934	2382	-	1.87475E-06
3.00E-06	1266	4298	-	8.55955E-07
1.00E-06	3396	(999+999)*8	no convergence	2.17654E-06
SCAN1.5G				
1.00E-05	146	436	-	3.14240E-06
1.00E-06	215	672	-	2.85173E-07
1.00E-15	1495	6309	-	1.40953E-16

* Benchmark problems : <ADJBNK_REF>, <ADJBNK01>, ...,<ADJBNK07> 8 cases

SCAN RFSP Diff(%)								0.5897 0.5928 -0.53	0.6265 0.6297 -0.50	0.6470 0.6502 -0.49
Max. CH. Power					0.5347 0.5379 -0.59	0.6560 0.6590 -0.45	0.7642 0.7670 -0.37	0.8335 0.8364 -0.34	0.8770 0.8799 -0.33	0.8905 0.8933 -0.32
Max. Diff.				0.6063 0.6091 -0.46	0.7528 0.7556 -0.37	0.8880 0.8906 -0.30	0.9898 0.9925 -0.27	1.0554 1.0579 -0.24	1.0859 1.0884 -0.23	1.0841 1.0865 -0.22
			0.6246 0.6273 -0.42	0.7935 0.7960 -0.32	0.9506 0.9530 -0.25	1.0771 1.0793 -0.21	1.1634 1.1656 -0.19	1.2108 1.2128 -0.17	1.2228 1.2248 -0.17	1.2013 1.2032 -0.15
		0.5857 0.5880 -0.39	0.7821 0.7842 -0.27	0.9502 0.9523 -0.22	1.0898 1.0919 -0.19	1.1920 1.1938 -0.15	1.2521 1.2537 -0.13	1.2721 1.2734 -0.10	1.2661 1.2673 -0.10	1.2373 1.2386 -0.10
		0.7320 0.7340 -0.27	0.9261 0.9280 -0.20	1.0707 1.0723 -0.15	1.1832 1.1848 -0.13	1.2507 1.2519 -0.10	1.2792 1.2801 -0.07	1.2598 1.2607 -0.07	1.2370 1.2377 -0.05	1.2150 1.2154 -0.04
	0.6345 0.6365 -0.32	0.8530 0.8548 -0.21	1.0338 1.0353 -0.15	1.1351 1.1363 -0.10	1.2167 1.2176 -0.07	1.2628 1.2633 -0.04	1.2641 1.2642 -0.01	1.2217 1.2218 -0.01	1.1458 1.1457 0.01	1.1344 1.1341 0.03
	0.7456 0.7473 -0.23	0.9609 0.9624 -0.16	1.1183 1.1195 -0.10	1.1815 1.1824 -0.07	1.2299 1.2303 -0.03	1.2478 1.2478 -0.00	1.1785 1.1781 0.03	1.1312 1.1307 0.04	1.1008 1.1000 0.07	1.0940 1.0930 0.09
0.5766 0.5786 -0.34	0.8248 0.8264 -0.20	1.0384 1.0397 -0.13	1.1753 1.1761 -0.07	1.2062 1.2067 -0.04	1.2236 1.2235 0.01	1.2102 1.2098 0.03	1.1315 1.1306 0.08	1.0898 1.0889 0.09	1.0613 1.0600 0.12	1.0513 1.0498 0.15
0.6323 0.6345 -0.35	0.8902 0.8917 -0.17	1.0965 1.0976 -0.10	1.2173 1.2178 -0.04	1.2154 1.2154 -0.00	1.2073 1.2069 0.04	1.1403 1.1396 0.07	1.0978 1.0965 0.12	1.0577 1.0561 0.15	1.0266 1.0249 0.17	1.0113 1.0095 0.18
0.6621 0.6642 -0.31	0.9217 0.9232 -0.16	1.1268 1.1276 -0.07	1.2459 1.2461 -0.01	1.2484 1.2482 0.01	1.2283 1.2273 0.08	1.1365 1.1354 0.10	1.0850 1.0834 0.15	1.0400 1.0382 0.17	1.0035 1.0013 0.22	0.9757 0.9735 0.23

6 NORMALIZED CHANNEL POWER DIFF. <B6-1.5G-45%ZL>

7 NORMALIZED CHANNEL POWER DIFF. <B6- 2G-45%ZL>

SCAN RFSP Diff(%)								0.5604 0.5628 -0.44	0.6018 0.6041 -0.38	0.6226 0.6249 -0.36
Max. CH. Power					0.5109 0.5134 -0.50	0.6340 0.6362 -0.34	0.7411 0.7431 -0.27	0.8129 0.8148 -0.24	0.8580 0.8599 -0.22	0.8722 0.8740 -0.21
Max. Diff.				0.5830 0.5851 -0.36	0.7344 0.7364 -0.27	0.8709 0.8727 -0.20	0.9735 0.9752 -0.18	1.0403 1.0419 -0.15	1.0724 1.0738 -0.13	1.0711 1.0725 -0.13
			0.6016 0.6035 -0.31	0.7762 0.7779 -0.22	0.9362 0.9377 -0.16	1.0648 1.0662 -0.14	1.1527 1.1540 -0.11	1.2018 1.2028 -0.08	1.2154 1.2165 -0.09	1.1945 1.1954 -0.07
		0.5629 0.5648 -0.34	0.7649 0.7665 -0.21	0.9371 0.9385 -0.15	1.0800 1.0812 -0.11	1.1851 1.1860 -0.08	1.2475 1.2482 -0.06	1.2696 1.2701 -0.04	1.2653 1.2657 -0.03	1.2369 1.2373 -0.03
		0.7117 0.7132 -0.21	0.9124 0.9136 -0.14	1.0618 1.0627 -0.08	1.1784 1.1792 -0.07	1.2499 1.2504 -0.04	1.2811 1.2813 -0.02	1.2647 1.2648 -0.01	1.2434 1.2434 0.00	1.2211 1.2209 0.01
	0.6118 0.6133 -0.24	0.8375 0.8387 -0.14	1.0235 1.0244 -0.09	1.1298 1.1304 -0.05	1.2160 1.2163 -0.02	1.2667 1.2666 0.01	1.2706 1.2703 0.02	1.2308 1.2305 0.02	1.1572 1.1565 0.06	$1.1458 \\ 1.1451 \\ 0.06$
	0.7260 0.7274 -0.19	0.9480 0.9492 -0.12	1.1111 1.1118 -0.07	1.1796 1.1800 -0.04	1.2327 1.2327 -0.00	1.2550 1.2546 0.03	1.1892 1.1884 0.06	1.1439 1.1431 0.07	1.1146 1.1136 0.09	1.1080 1.1068 0.11
0.5556 0.5574 -0.32	0.8102 0.8115 -0.16	1.0285 1.0294 -0.09	1.1709 1.1715 -0.05	1.2073 1.2072 0.01	1.2294 1.2290 0.03	1.2205 1.2200 0.04	1.1449 1.1438 0.09	1.1046 1.1035 0.10	1.0771 1.0758 0.12	$1.0675 \\ 1.0660 \\ 0.14$
0.6158 0.6177 -0.31	0.8784 0.8797 -0.15	1.0892 1.0900 -0.07	1.2156 1.2159 -0.02	1.2197 1.2196 0.01	1.2161 1.2155 0.05	1.1537 1.1529 0.07	1.1129 1.1116 0.12	1.0742 1.0729 0.12	1.0441 1.0424 0.16	1.0290 1.0273 0.17
0.6465 0.6483 -0.28	0.9113 0.9125 -0.13	1.1212 1.1219 -0.07	1.2461 1.2461 -0.00	1.2555 1.2552 0.02	1.2396 1.2388 0.07	1.1512 1.1501 0.10	1.1015 1.1000 0.13	1.0578 1.0563 0.14	1.0222 1.0203 0.18	0.9941 0.9923 0.18

8 Boron Reactivity Worth and Critical Boron Concentration (Wolsong 3, Phase-B)

	PPV/RFSP1.5	WIMS-AECL/ RFSP1.5	WIMS-AECL/ SCAN1.5	WIMS-AECL/ RFSP2	WIMS-ACEL/ SCAN2
Boron reactivity worth [mk/ppm]	8.2900	8.1724	8.1700	7.7274	7.7267
Critical boron concentration[ppm]	9.0830	8.3031	8.3030	8.1298	8.1294
C.b. concentration diff[%]	1.71	-7.02	-7.02	-8.96	-8.97
C.b. concentration measurement[ppm]			8.9300		

9 Total Reactivity Worth Difference

(Wolsong 3, Phase-B)

	PPV/RFSP1.5	WIMS-AECL/ RFSP1.5	WIMS-AECL/ SCAN1.5	WIMS-AECL/ RFSP2	WIMS-ACEL/ SCAN2
ADJ rods	5.02	-6.34	-5.94	-5.83	-5.43
ADJ banks	0.53	-5.93	-6.04	-5.64	-5.73
MCA rods	7.37	4.85	4.53	4.16	3.83
MCA banks	10.13	13.64	13.33	11.75	11.66
SOR	9.18	6.75	5.89	6.29	5.64
MT 35~69	-1.62	-45.46	-48.35	-47.45	-49.59

*Value = (Calculation – Measurement)/Measurement × 100 [%]

1 WIMS-AECL/SCAN Calculation Flowchart for Simulate model

2 CANDU-PHWR Core

3 Mesh Configuration for CANDU-6 Core (42×34×20 SCAN Model)

