MELCOR

Sensitivity Analyses on Hydrogen Generation for KNGR using MELCOR

Abstract

The amount of in-vessel hydrogen generation during severe accidents affects the integrity of containment. For the Korean Next Generation Reactors, sensitivity analyses on the in-vessel hydrogen generation are described. The typical accident sequences of a station blackout and a large LOCA scenario are selected. A lower head failure model, a Zircaloy oxidation reaction model and a B_4C oxidation reaction model are considered as the sensitivity parameters. As for the base case, 1273.15K for a failure temperature of the penetrations or the lower head, an Urbanic-Heidrich correlation for the Zircaloy oxidation reaction model and the B_4C oxidation reaction model are used. The results of the studies are summarized below : (1) When the penetration failure temperature is higher, or the creep rupture failure model is considered, the amount of hydrogen increases for two sequences. (2) When the MATPRO-EG&G correlation for a Zircaloy oxidation reaction is considered, the amount of hydrogen is less than the Urbanic-Heidrich correlation (Base case) for both scenarios. (3) When the B_4C reaction model turns off, the amount of hydrogen decreases for two sequences.

`2001

1.

MELCOR [1] 가 • , Zr , B_4C . 2. 가 1273.15K Urbanic-Heidrich , B_4C

2.1 (penetration tube)

thimble , 가 가 MAAP [2] NUREG/CR-5642[3]

MELCOR 가 (ultimate strength)가 가 COR00009 (3)) 1273.15 K 가 (가 가 . 가

(plugging) , 가 . • (Base) 1273.15K . Inconnel-600

1650K[3] (Case 1)

.

•

.

•

.

,

•

 $d(W^2)/dt = K(T) = A \exp(-B/T)$

W: [kg/m²] K(T): A,B: T: [K]

,

Urbanic-Heidrich [4]

•

K(T) = 29.6exp (-1682) K(T) = 87.9exp (-1661)	0.0/T) < 1853 ° 1 0.0/T) 1853 ° 1	K			
MATPRO-EG&G	[5]				
$K(T) = 33.6 \exp(-2006)$	(0.0/T) < 1853 °	K			
$K(T) = 10.82 \exp(-166)$	10.0/T) 1853 °	K			
		2	가 .		
		가 가	•		MELCOR
				. Base	Urbanic-
Heidrich	Case 3	MATPRO-EG&0	G		
0 0 D C					
2.3 B_4C					
		B.C			(H.)
(\mathbf{CO})	(CO_{2})	(CH_{\star})			[1]
13260kg	B.C Control Elem	ent Assembly		.[6].	[*]
10200118				.[~].	
B ₄ C フト					
$B_4C + 7H_2O> 2B_2O_3 +$	$CO + 7H_2 + Q_1$				
$B_4C + 8 H_2O> 2 B_2O_3 -$	$+ CO_2 + 8 H_2 + Q_2$				
$B_4C + 6 H_2O> 2 B_2O_3 -$	$+ CH_4 + 4 H_2 + Q_3$				
5.0				-1	
B ₄ C	,	~		가	B ₄ C
(C1005 (4))	(Base Case) B_4	C		(Cas	e4)
0					
3.					
3 1					
5.1					
		WASH 1400 [7]		TMI B'	
		WASH-1400 [7]		TWILD	(Loss of Onsite &
Offsite AC Power)	(Auxiliar	v Feedwater System)		(Loss of Olisite a
가 기관 기관 기관 가		(Turbine Bypass System)	vstem)		(Atmospheric
· Dump valve)가	,	、 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	가		(
1 / 1		(Safety	Injection	Pump),	
(Containment Spray Pump	p)	(Conta	inment Fa	n Cooler)	
	가				

(Safety Injection Tank)

(Main Steam Safety Valve) [8]. 100 가 100 가 가 . , 가 4 3.1.1 Case 1 Case 27 Base Case . Case 1 1650K 가 32 가 (1) 33kg 가.(2, 1 Case 2 가). Creep Base Case 305 フト , (1) 44kg 가 .(2, 1) 3.1.2 Zr MATPRO-EG&G Case 3 Urbanic-Heidrich Base Case UO_2 (9282) Base 1 (1). 1154 가 Case (8871) 411 가 가 Case 3가 550kg Base Case 12kg (2, 2 Urbanic-Heidrich MATPRO-EG&G), . 3.1.3 B₄C Base Case B_4C Case 4 B_4C . , Base Case 3 . 13000 Case 4 Base Case • Case 4 1340 (CO), (CO₂), (CH_4) 가 (2), Case 4 B_4C 가 Case Case .

3.2

.

 $0.5 ft^2$ (가 0.243 m) Surge Line Loop 가 (Cold Leg Pump Discharge) , 가 (S/G Broken Compartment A) (Critical flow) 가 • (SIP) 4 4 (SIT) IRWST (In-containment Refueling Water Storage Tank) (Suction) 4 (DVI) (Downcomer) 가 (1825 psia) (36.7 psia) (SIAS) 3&4 (LPSI) 2 가 2 (RCS) (610 psia) 4 가 4 가 가 KNGR SSAR[6] Level 2 PSA . 가 (Non Safety Grade) 2 (CSP) (36.7 psia) . SIP 가 CSP IRWST (Suction)

(Coolant Released through the Break)(Condensated Steam)HVT (HoldupVolume Tank)IRWSTHVTIRWSTIRWST7¹, SIPCSP 7¹.,27¹.

(MFW, Main Feed Water) (AFW, Auxiliary Feed Water) 가

3.2.1

_

Case 1 C	Case 2가				Base Cas	e				
				Case 1			1650K	가		
	71		(3)			가	. (4,		
4)	Case 2					Creep		가		
		,			Base Case	2973	가		(3
)			20kg	가	. (4,	4)				
222 7										

3.2.2 Zr

MATPRO-EG&G			Case 3	Case 3 Urbanic-Heidrich			Base Case								
						3		UO2					(621)	Base
Case (407)		214	가				341 가			(3).		가
						3	308kg	Case	3가	Base	Ca	se		104	4kg
	(4,	5),		Urbanic-Heidr	ich		MAT	PR	0-Е	G&G		
							•								

3.2.3 B₄C

Base Case		B_4C				Case 4					B_4C
							,	Base Case			
								6			
		Case 4		Base (Case			가			
		Case 4	가 394kg	Base C	Case	18kg		(4,	6),
		B_4C									
	(CO),		(CO ₂),	(CH ₄)			(4), Case 4		B_4C	
				가フ	ŀ						

3.3

	,				1650K	가		
(Case 1)					5.8%	가	,	
		(32)		가				,
		(71)						
	Creep				(Case 2),			
		7.8%, 5.0%	가	,				
Cas	e 1		(305	, 2973)	가		
. MATPRO-EG&G		Case 3	Urbanic	-Heidrich			Base C	ase

- 1. R.M. Summers, et al., "MELCOR Computer Code Manuals (Version 1.8.4)," SNL, NUREG/CR-6119, SAND97- 2185, July 1997.
- 2. "MAAP4 (Modular Accident Analysis Program for LWR Plants Code) Manual,"EPRI, May 1994.
- 3. EG&G,"Light-Water-Reactor Lower Head Failure Analysis" NUREG/CR-5642, EGG-2618, October 1993.
- 4. V. F. Urbanic and T. R. Heidrich, "High-Temperature Oxidation of Zircaloy-2 and Zircaloy-4 in Steam," J. Nuc. Matls., 75, pp. 251-261 ,1978.
- "SCDAP/RELAP5/MOD2 Code Manual, Volume4: MATPRO-A Library of Material Properties for Light-Water-Reactor Accident Analysis," NUREG/CR-5273,EG&G-2555,Vol.4 R3, February 1990.
- 6. KEPCO, "Korean Next Generation Reactor Standard Safety Analysis Report (Rev.1)," February 2001.
- U.S.NRC, "Reactor Safety Study-An Assessment of Accident Risks in U.S. Commercial NPP," WASH- 1400 (NUREG-75/-014), October 1975.
- S.Y.Park, "Accident Analyses on TMLB' and LOCA for KNGR using MELCOR Code," KAERI, KAERI/TR-1677/2000, November 2000.

	Base	Case 1	Case 2	Case 3	Case 4
Parameter Description	(*1)	(*2)	(*3)	(*4)	(*5)
Core Uncovery Start (sec)	6047	6047	6047	6047	6047
Core Oxidation Initiation (sec)	8340	8340	8340	8340	8340
UO ₂ Melting Start (sec)	8871	8920	8920	9282	8889
Core Support Plate Fail /Start of Debris Quench (sec)	12926	12926	12926	14080	14270
Lower Head Penetration Has Failed/Beginning of	12935	12967	13240	14086	14275
Debris Ejection to Cavity (sec)					

- (*1) ICI penetration tube failure temperature = 1273.15K Oxidation Model : Urbanic-Heidrich correlation B₄C oxidation Model was employed.
- (*2) ICI penetration tube failure temperature = 1650K
- (*3) ICI penetration tube failure was not considered. Reactor Vessel failed due to creep rupture. temperature = 5000K
- (*4) Oxidation Model : MATPRO-EG&G correlation
- (*5) B_4C oxidation Model was not employed.

가

		Cumulative	Mass prior	to VB (kg)	
Gas	Base	Case 1	Case 2	Case 3	Case 4
Hydrogen (H2)	562.25	594.90	606.33	549.89	630.6
Carbon Monoxide (CO)	5.633	5.633	5.633	4.609	0.0
Carbon Dioxide (CO ₂)	12.22	12.22	12.22	13.83	0.0
Methan (CH ₄)	1.4E-4	1.4E-4	1.4E-4	5.2E-4	0.0

	Base	Case 1	Case 2	Case 3	Case 4
Parameter Description	(*1)	(*2)	(*3)	(*4)	(*5)
Core Uncovery Start (sec)	100	100	100	100	100
Core Oxidation Initiation (sec)	120.01	120.01	120.01	120.01	120.01
UO ₂ Melting Start(sec)	407	407	406	621	419
Core Support Plate Fail /Start of Debris Quench (sec)	4625	4625	4625	4990	4683
Lower Head Penetration Has Failed/Beginning of	4698	4769	7671	5039	4738
Debris Ejection to Cavity (sec)					

- (*1) ICI penetration tube failure temperature = 1273.15KOxidation Model : Urbanic-Heidrich correlation B₄C oxidation Model was employed.
- (*2) ICI penetration tube failure temperature = 1650K
- (*3) ICI penetration tube failure was not considered. Reactor Vessel failed due to creep rupture. temperature = 5000K
- (*4) Oxidation Model : MATPRO-EG&G correlation
- (*5) B_4C oxidation Model was not employed.

/	1	
-	T	•

	Cumulative Mass prior to VB (kg)						
Gas	Base	Case 1	Case 2	Case 3	Case 4		
Hydrogen (H2)	411.55	411.55	431.97	307.49	394.26		
Carbon Monoxide (CO)	6.376	6.376	6.376	5.682	0.0		
Carbon Dioxide (CO ₂)	11.05	11.05	11.05	12.14	0.0		
Methan (CH ₄)	3.9E-4	3.9E-4	3.9E-4	1.8E-4	0.0		

그림 6 대형 냉각재 상실 사고 시 B₄C 산화 반응 모델에 따른 수소 생성량 비교