2001

,

Preliminary test on the performance of the KNGR unit cell sparger

,

105 , 305-600 : +82-42-868-2719, Fax : +82-42-868-8362 : <u>scho@kaeri.re.kr</u>

,

가 (POSRV) . 기· . 12 1 (Prototype Sparger) Unit Cell Test

Abstract

•

Following POSRV actuation, steam enters the SDVS discharge line compressing the air within the line and expelling the water slug into the IRWST. During the successive discharging of water, air and steam, the jets entering the pool from the discharge device result in drag loads on submerged structures within the influence of the jets. In this paper, the preliminary test results of Unit Cell Test, the objectives of which are to investigate the performance of a prototype sparger during the air-clearing period, and its limitations are discussed. On the basis of the preliminary test results, the work scope of Unit Cell Test and the counter-measures are also discussed.

1.	
1.1	
2010	(KNGR, 4000MWt)
	(IRWST)
(SDVS)	. IRWST
가 ,	, (IWSS),
(SCS), (SIS),	(CSS)
,	
	가
4 POSRV 가 RCS	
(SIS)	(Feed & Bleed)
. POSRV	가 IRWST
	, , ,
IRWST IRWST	
, ,	가
(Air Clearing)	.[1,2] IRWST
	. 6 I
	[3], IRWST

Fig. 1 Schematic Representation of KNGR IRWST Sparger

			가
1		Unit Cel	1 Test
Unit Cell Test	2 가		
1)	IRWST		
2)		(Vacuum Breaker)	
Unit Cell Test			
1.2			
POSRV 가		가	
(Water Clearing フト	g) .	가	(Air Clearing)
가		(Steam Discharging	;) . .[4]
, ,	, /		

•

•

•

2.

2.1

, [5]

■ POSRV

- Swan Neck : 6 , Sch.160 -> 4 , Sch.160

POSRV

- : 12 , Sch. 160

- 2 : 14 , Sch.80

-	IRWST	ר ז	'ŀ	: 10	, Sch.8	0				
-	Sparger	r		:6	, Sch.80)				
POSRV	sv	van nec	k							
		le	oop seal							
4	POSI	RV		loop				, 2	14	
		•				IRWS	ST	가		6
			•	POSRV					$12.4m^{3}$,
49° (2,							12.2kg		
	가	,								
1.48 ~	1.92kg		•							
POSR	V	4 가	가							throat
0.	.00385m ²	(d=70m	m) .			(stro	oke ti	me)		0.7 ,
((pilot ope	rated)	1.7			,		,		,
		ABB	Atom		M150,	Ι		, 6	, Sch.40	(ANSI
standard)							10m	m, 144		
	25mm,	1		가						
39mm, 8					(Load R	educti	ion R	ing)		
				가						
									2	

2.2

.

Fig. 2 Construction Drawing of the KNGR sparger

Fig. 3 Location of Dynamic Pressure sensor in Quench Tank

$$H = H_0 + \frac{(\mathbf{r}_c - \mathbf{r}_s)gH_1 - \Delta p}{(\mathbf{r}_h - \mathbf{r}_s)g}$$
(1)

(1)
$$H_0 = 0.15m$$

 $H_1 = , 2.7m$
 $\rho_c = (kg/m^3)$
 $\rho_s = 7^{1}$ (kg/m^3)
 $\rho_h = 7^{1}$ (kg/m^3)
 $g = 7^{1}$ $, 9.798m/s^2$
2 , Sch.160
venturi-meter 7¹ . (2)

.[6]

가

 $q = \frac{C}{\sqrt{1 - \boldsymbol{b}^4}} \boldsymbol{e}_1 \frac{\boldsymbol{p}}{4} d^2 \sqrt{2\Delta p \boldsymbol{r}_s}$ (2)

(2) C = 0.995 (Discharge coefficient for machined case) $\beta = 0.6884$ (d/D)

Fig. 4 Schematic Diagram of Unit Cell Test Facility

	d = 0.0294	m			
	ρ_s =	(venturi) (kg/m ³)			
	$\Delta p = ventus$	ri		(Pa)	
	$\varepsilon_1 = expansion$	ion factor			
HV-202	2 3m	6 4m	28.3m ³		
9	piezoelectric	가 HV-202	3.5m . 6		
		4			. Unit Cell
3. 3.1					
1.1 가	가	Unit Ce	ell Test		
	가 가 가		,	2 가	
				가	,
	5		가		(PT-203)

.

Fig. 6 Variation of pressure at the tank wall with the operating time difference of valves (0.7)

Fig. 7 Variation of pressure at the tank wall with the air chamber pressure $(20 \sim 30^{\circ}C, \Delta T : 1.33 \text{sec})$

.

.

•

가

8

•

,

7

가

3.1.3

Fig. 8 Variation of pressure at the tank wall with the pool temperature (Initial air pressure : $35 \sim 40$ bar, $\Delta T : 0.6$ sec)

3.1.4

가

2

9

•

venturi meter

•

가

gate

•

,

•

Unit Cell Test	matrix		
•	(HV-202):0.7/1.7	/sec
•		: 0.7 ~ 1	l.9kg
•		: 50 ~ 9	$0^{\circ}\mathrm{C}$
		:	~ 3.5m
		: 20 ~90)°C
•		: 2 ~ 4%	,)

,

4.

		6	, I		1	
				ラ	ነት	Unit
Cell Test	,	,				
						•
1)	$0.4 \sim 0.6$	가 가			•	
2)						,
				,	,	
,	•					
3)			가	,	,	

.

,

- 1. Nilsson L., "Experimental Investigation of Steam Vent Clearing Phenomena at System Relief into a Condensation Pool of Water," AE-RL-1630, 1975.
- 2. J. Fredell, "Relief System: Theoretical Study of the Pressure Field in the Condensation Pool," KVB 81-178, ABB Atom, June 29, 1981.
- 3. Korea Power Engineering Company, Inc., "IRWST Thermal Hydraulic Load Analysis Report," N-001-END461-201, 1999.
- 4. Seok Cho et al., "Characteristics of Air Clearing Loads of Sparger," Proceeding of 2000 KNS Fall meeting, Daejeon, Korea, 2000.
- 5. , " -IRWST Sparger ," NES/RD-20000004/M, 2000.
- International Standard Organization, "Measurement of Fluid Flow by Means of Pressure Differential Devices, Part1:Orifice plates, Nozzles and Venturi tubes inserted in circular cross-section conduits running full," ISO-5167-1:1991(E), 1991.