

Abstract

A modeling of long-term behavior on KC-3 catalyst, Pt/SDBC catalyst to be used in Wolsong Tritium Removal Facility (TRF) which is being developed, was studied by a continuous operation for a month in a bench-scale recycle reactor. Using the model obtained from a "time-on-stream" theory, a deactivation profile of KC-3 catalyst for long-term operation can be estimated. The specific catalytic activation of KC-3 after 3-year operation under TRF operation conditions, flow rate of 0.5 m/s and reaction temperature of 70°C, is estimated to be about 21% of its initial activation, therefore an overall reaction rate would be about 35% of initial rate.

1.

 7
 (Pressurized Heavy Water Reactor; PHWR)

 (D₂O)
 (Tritium; T)

2001

(Tritium Removal

Facility; TRF)	•					
				가		
(1),(2)	2		. 2			(3)
	가				(Liquid Phase	Catalytic
Exchange Proces	ss; LPCE)					
DTO (v	$(t) + D_2(g)$	=	DT (g) + D	₂ O (v)		(1)
$D_2O(v)$	+ DTO (<i>l</i>)	=	DTO (v) +	$D_2O(l)$		(2)
D ₂ (g)	+ DTO (<i>l</i>)	=	DT (g) + D	$_{2}$ O (<i>l</i>)		(3)
TRF		가				TRF
						가
			(KC-1, KC-2)		AECL	
	[1].					
	TRF		Pt/SDBC	KC-1		
KC-3				1		
(HD)	(H ₂ O)			,		
	3		KC-3			
2. 2.1						
		HD	H_2O	(4)		
HDO	$\mathbf{P}(\mathbf{v}) + \mathbf{H}_2(\mathbf{g}) \iff$	HD	$O(g) + H_2O(v)$			(4)
(4)	(6) .	Molar		(5)	, Effectiveness	Factor
R =	$k_{r,f} C_{HDO} C_{H}$	2 —	$k_{r,b} C_{HD} C_{H}$	H ₂ O		(5)

•

Facility; TRF)

,

$$R = k_{f} \mathbf{h} C_{HDO} C_{H_{2}} - k_{b} \mathbf{h} C_{HD} C_{H_{2}O} - \cdots (6)$$
$$= k_{f} \mathbf{h} C_{HDO} C_{H_{2}} - k_{b} \mathbf{h} C_{HD}$$

(6) ,
$$k_{r,f}$$
 (7)

•

$$k_{r,f} = \frac{Q + F}{W (\mathbf{a}_{r} + \frac{1}{\mathbf{p}})} \cdot \ln(\frac{y_{e} - y_{in}}{y_{e} - y_{out}}) - \dots (7)$$

$$\frac{1}{k_{r}} = \frac{1}{k_{cat}} + \frac{1}{k_{mt}} - \dots$$
(8)

/

$$\begin{array}{cccc} (8) & k_{cat} \\ k_{mt} & & \cdot & k_{mt} \\ & & & k_{cat} \end{array}$$

2.2

•

가 (Poison) (Poisoning), (Coking), (Fouling) 가 가 [2,3]. Wojciechowski[4,5] "Time-on-stream" 가 . ,

(Active site)

.

•

(10) • ٦ . [c]

(10) (9) (11) .

.

.

•

$$q = e^{-K_P \cdot t}$$
 when m=1 ----- (13)

HDO (v) + H₂ (g) + n · S
$$\Leftrightarrow$$
 HD (g) + H₂O (v) + n · S ----- (15)

(15) (6) ,
0 (16) ,

$$\frac{k'_{f}}{k'_{b}} = \frac{C_{HD}^{e}}{C_{HDO}^{e}} = \frac{y^{e}}{\mathbf{n}^{e}} \cdot \frac{1}{\mathbf{p}} = \frac{1}{\mathbf{a}_{r}} \cdot \mathbf{p}$$
 ----- (16)
(17) .

(18) (17) (19) .

 $\begin{array}{ccc} 7 \\ \hline \\ modulus, \varphi \end{array} & (20) & (21) \\ \hline \\ \end{array} & \begin{array}{ccc} 7 \\ \hline \\ \end{array} & \begin{array}{cccc} Effectiveness \ factor, \ \eta \end{array} & Thiele \\ \hline \\ \end{array}$

$$\boldsymbol{f} = \boldsymbol{d} \cdot \sqrt{\frac{\boldsymbol{k'}_{f0} \cdot \boldsymbol{q}^{n} \cdot \boldsymbol{r}_{f} \cdot \left(\boldsymbol{D}_{eff,HD} + \boldsymbol{a}_{r} \cdot \boldsymbol{p} \cdot \boldsymbol{D}_{eff,HDO}\right)}{\boldsymbol{D}_{eff,HDO} \cdot \boldsymbol{D}_{eff,HD}}} \quad ----- (21)$$

•

Effectiveness factor, η , R (24) (25)

,
$$\theta = 1$$
 , R_0 (26) R/R_0

(27)

.

Pt/SDBC 2가 _ (Styrene-Divinyl-Benzene Copolymer; SDBC) 가 2가 . KC-1 KC-3 , 2가 1 [6,7]

3.2

1 . Water Jacket 4 Superficial Velocity가 가 7m/s . 가 가 (Equilibrator)가 (Water saturator)가 가 / . 가 2.4 m³/hr Metal Bellows 가 가 • 가 / Metal Bellows •

1.1 가 가 가 0.3 kW 가 2 kW Water Jacket ±0.1 °C On-Line 가 , Model DS-6200) [8]. (

4.

4.1 80°C KC - 1 35 15 15 4% 53% , 가 [1]. 2 , 가 가 . 2 30

, , $k_r(t)$, k_{mt} , $k_{cat}(0)$, $k_{cat}(t)$ $k_{cat}(t)$, , $k_{cat}(t)/k_{cat}(0)$ (27) $k_{cat}(t)/k_{cat}(0)$ (27) KC-3 2 , $(k_{cat}(t)/k_{cat}(0))$ (t=0) 2 . 4 (27) Psedo-1st-, ϕ_0 , n, m, K_p . , order reversible reaction n=1, ϕ_0 [9]. 55 2 m, K_p . 가 3 , KC-1 AECL 2 • 2 AECL 가 . 1) AECL Thiele Modulus, ϕ_0 3 KC-, 2) AECL 1 KC-3 , 가 가 , 3 3 . 4.2. φ₀=55 KAERI , 가 TRF AECL 80°C KC-1 3 , AECL KC - 1 1 . 2 $\phi_0 = 55$ K_{p} , m 3 ,

4 .

(27)

3				m K _p 가	AECL	
가			3	2가		
4.3 TRF	KC	-3				
			LPCE			
TRF	ŀ	KC-3		0.5 m/s	,	가 70°C
가						•
	AECL	4가	(25,	30, 60, 80°C)	KC-1	
	$k_r(T)/k_r(T=25)$	$^{\circ}$ C), k_{mt} , $k_{cat}(t)$	$/k_{cat}(25^{\circ}C)$			(KAERI
data)	TRF					
			(KAI	ERI model) AE	ECL	(AECL
model)	3	KC-3			, AECL	KC-1
	1 m/s, 80°C		(AECL da	uta)		
1 m	/s, 70°C					
KAERI moo	del AECL m	odel	3			, 5
4						

TRF	Pt/SDBC	KC-3			'Time-on-
stream"	. TRF	0.5 m/s,	70°C		3
	KC-3		21%	,	
	35%				

$\boldsymbol{D}_{\text{eff},i}$	effective diffusivity of species i [cm ² /s]
Е	concentration of poison
F	feed-gas flow [mol/s]
K _p	rate constant in Eqn. (12)
k _b	backward second-order intrinsic rate constant [mL/s g]
k' b	backward pseudo first-order intrinsic rate constant [mL/s g]

$\mathbf{k}_{\mathrm{cat}}$	specific forward catalytic rate constant [mol D ₂ /s g]
\mathbf{k}_{f}	forward second-order intrinsic rate constant [mL/s g]
k' _f	forward pseudo first-order intrinsic rate constant [mL/s g]
k _{cat}	specific forward catalytic rate constant [mol D_2 /s g]
\mathbf{k}_{mt}	gas/solid mass transfer coefficient [mol D2/s g]
\mathbf{k}_{p}	rate constant for catalytic decay
\mathbf{k}_{r}	forward catalytic rate constant [mol D_2 /s g]
$\mathbf{k}_{\mathrm{r,f}}$	forward catalytic rate constant [mol D_2 /s g]
m	number of active site removed per deactivation event
n	number of active sites involved in reaction event
Q	recycle-gas flow [mol/s]
R	rate of reaction [mol D ₂ /s g]
S	concentration of active sites
\mathbf{S}_0	initial concentration of active sites
Т	temperature [K]
t	time [d or hour or min or s]
W	weight of catalysts [g]
у	deuterium atom fraction in gas
$\alpha_{\rm r}$	separation factor for gas-phase reaction
π	molar ratio of water vapor of hydrogen
φ	Thiele modulus
η	effectiveness factor
θ	fraction of catalytic sites remaining unpoisoned
ν	deuterium atom fraction in vapor

- Suppiah, S., Lee, H., and Kutchcoskie, K.J., "Characterization and Performance Testing of KAERI/KEPRI Catalysts for Hydrogen Isotope Exchange", AECL RC-2082 (1998).
- 2. Froment, G.F., and Bischoff, K.B., "Chemical Reactor Analysis and Design", John Wiley and Sons, New York (1979).
- Oudar, J. and Wise, H. (Eds.), "Deactivation ans Poisoning of Catalysts", Marcel Dekker, Inc. New York (1985).
- Wojciechiwski, B.W., "A Theoretical treatment of Catalyst Decay", Canadian J. Chem. Eng., 46, 48 (1968).
- Suppiah, S., Chuang, K.T., and Rolston, J.H., "Diffusional Effects in Waterproofed Catalysts for Isotope Exchange Between Hydrogen Gas and Water Vapor", Canadian J. Chem. Eng., 65, 256

(1987).

- 6. , " - 7
- ", 0281470 (2000.11.17)
- 7. , " (I)", , '98 -397(1998).
- 8. , " ", KAERI/TR-1716/2001, (2001).
- 9. , "Pt/SDBC ", , (2001).

	KC-1	KC-3
Pt loading (wt %)	0.8	1.0
BET area (m^2/g)	442	452
Hydrogen chemisorption	0.98	1.17
Apparent density (g/cm3)	0.18	0.18

2.				
Experimental condition	ons	Experimental results		
Catalyst Catalyst weight (g) Reactor diameter (mm) Catalyst bed height (mm) Reactor temperature (°C) Water flow rate (mL/min) Column pressure (kPa, abs) Spike flow (L/min, STD) Spike gas D conc. (ppm)	KC-3 19.0 55.3 40.0 60.0 50 137.2 0.195 220500	Time elapsed (h) 5.5 28 75 172 219.5 340.5 412.5 581 676	Reactionrateconst. $(mol. D^2/g s)$ 9.63E-049.51E-046.49E-046.49E-047.50E-046.09E-046.25E-045.98E-045.42E-045.43E-045.43E-04	

3. KC-3

Parameter	KAERI model	AECL model
ϕ_0	55	20
m	3.13	4
n	1	1
K _p	0.35	2.3
Ĩ		
r ²	0.8191	0.5594

4. AECL (H	KC-1 1 m	n/s, 80°C)
KAERI		
Parameters	KAERI model	AECL model

	φ ₀	55	20
	m	4.05	4
	n	1	1
	K _p	2.16	2
After 3-yr	$k_{cat}(t)$, mol D ² /s g	1.19E-03	1.18E-03
operation	$k_r(t)$, mol D ² /s g	1.97E-03	1.97E-03

3 5. TRF KC-3 Extrapolation from KAERI Interpolation from AECL data at 0.5 m/s, 60°C data at 1 m/s, 80°C Using Using AECL Using Using AECL KAERI model KAERI model model parameters model parameters parameters (KD-AM) parameters (AD-AM) (KD-KM) (AD-KM) Parameters 20 20 55 55 $\mathbf{\phi}_0$ 3.13 4 4.05 4 m 1 1 1 1 n 0.35 2 2.16 2 K_p k_{cat}(time,Temp.), $k_{cat}(0,60^{\circ}C)$ 1.28E-03 mol D^2/s g $k_{cat}(0, 80^{\circ}C)$ 5.13E-03 $k_{cat}(0,70^{\circ}C)$ 2.24E-03 3.28E-03 k_r (time,Temp.), 9.63E-04 $k_r(0,60^{\circ}C)$ _ 1.97E-03 mol D^2/s g $k_r(0,80^{\circ}C)$ $k_r(0,70^{\circ}C)$ 1.19E-03 1.70E-03 k_{cat} (t=3yr), mol D²/s g 4.64E-04 5.05E-04 7.65E-04 7.58E-04 k_r (t=3yr), mol D²/s g 4.11E-04 4.43E-04 6.32E-04 6.26E-04 0.21 0.23 $k_{cat}(t=3yr)/k_{cat}(0)$ 0.23 0.23 $k_r(t=3yr)/k_r(0)$ 0.35 0.37 0.37 0.37

4. TRF KC-3