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Abstract

The unified nodal method (UNM) for transient analytic function expansion nodal(AFEN) method solution to
two-group diffusion equation in rectangular geometry is newly formulated. The performance of the new UNM is
examined through the solution to the OECD/NEA PWR transient problem designated Al. It is shown that the
UNM for the transient AFEN calculations outperform the popular transverse integrated nodal methods (TINM)
like the nodal expansion method (NEM) and the analytic nodal method (ANM) in prediction accuracy at the

sacrifice of the computational time.
1. Introduction

Recently we presented a unified nodal method (UNM) formulation for the analytic function expansion nodal
(AFEN) method solutions to static two-group diffusion equations in rectangular geometry* and demonstrated that
the UNM formulation results in exactly the same solutions as the AFEN method solutions in terms of the three-
dimensional (3-D) static IAEA benchmark problem. The purpose of this paper is to present the UNM
formulation for the transient AFEN method solutions to transient neutronics problems in the rectangular
geometry and examine its computational effectiveness in terms of 3-D transient solutions to the well-known
OECD/NEA kinetics benchmark problem?,

2. UNM Formulation for Transient AFEN Solution

UNM formulation for the transient AFEN option requires determining intranodal flux distribution from a set

of the time-dependent 2-G diffusion equations for a given spatial node m
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( t) and C ( ) are the group g flux and the type d delayed neutron precursor density, respectively. The

other notations are standard.

The efficiency can be enhanced by applying exponential transform :

or (rit)=e“y? (rt).

A fully implicit temporal integration of Eq. (1) over the time interval between (t,, t,) leads to
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We dropped the superscript m in Eq. (2) for simplicity of notation. The fission source term of Eq. (1b) is

approximated by®

sz er(rt)=e “”‘sz O (r.t) 3)

Equation (2) is an inhomogeneous equation that one may use to determine the intranodal flux distribution at each

time step, as in reference 3. In order to determine the intranodal flux in the same way as in the static case,



however, we introduce following approximations;
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Substituting Eq. (4) into Eq. (2a), we have
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Equation (5) can be put
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where @™ = 2-dimensional column vector (™ ,@") . The elements of the 2x2 matrix A ™ are given by
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Equation (6) has exactly the same form as the 2-G equation used for determining the intranodal flux distribution

in the static AFEN calculation. A© characterizes the 2-G equation at the initial steady state and is given by
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Eqg. (6) can be diagonalized into the form

2™ (r)-AME™ (r)=0, (7)

where

E(n)(r) — (R(n) )‘1(p(n)(r) ,
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The similarity transform matrix R (™ can be defined in the same way as static case.
As shown in reference 4, the general solution of Eq. (7) is

EM(xy,2) = Z [A(’” sinh a(“)x +ally +a,(p’;)z)+ B cosh (a,(pnx)x +ally +a,(p’;)zj (8)

Equation (8) provides many different approximations for the intranodal flux distribution on which the AFEN is

based. One such approximation is given by
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The intranodal flux distribution above contains 19 expansion coefficients. They can be determined by 19 nodal

unknowns per rectangular prism node per neutron group; 1 node average flux (f_p ), 6 surface average fluxes

(Epus;u =X,Y,2;$=1,r), and 12 edge fluxes (Er()iu);u =X,Y,2;1 =1,2,3,4). To derive nodal coupling

relations among these nodal unknowns, the AFEN method uses nodal balance condition, current continuity
conditions at six nodal interfaces, and the twelve corner point balance (CPB) conditions. The UNM formulation
uses the same CPB conditions to get the twelve CPB equations for edge fluxes. To derive the rest of coupling
relations, however, the UNM follows the nodal expansion method (NEM) procedure based on the transverse

integration of Eq. (7), as shown below.
First, let us note that integration of Eq. (5) over each rectangular prism node results in the nodal balance relation,
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Equation (10) contains (p( )and Jéug as unknowns. Therefore its solution requires additional relations

between (p(n) and Jéﬂg . To get them in the UNM principle, we use the transverse integrated 1-D equations

of Eq. (7),
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& (u) and L_, (u) are the transverse integrated 1-D flux and the transverse leakage, respectively. Because of
pu pu

Eq. (9) for the intranodal flux, |:pu (u) can be expressed by
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where

0., (T) =&, sinh(2/1,,7),

gZpu (T) = aZ COSh(ZﬁpuT)-l- bZ’

The coefficients @,, a,,b, are determined so that glpu(il/Z):il, gzpu(i]/2)2+l, and

J:j/zzgipu (r)dt=0(i=12). The [ipu (1=02) are given by corner point (Eéu;u =X,Y,

i =1,2,3,4), surface average (& s ; U =X,Y,Z;s =T,l),and node average value (&) of ¢, (x,y,2) . For

A

example, L, is given by
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Instead of using &, (U) from direct integration of &(U,V, W) over V and W, the UNM formulation uses the

analytic solution of Eq. (11) which can be obtained by assuming the following expansion,
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where the basis functions f,  (T) are defined in reference 1.
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The five expansion coefficients are determined by nodal balance condition, &, = ]/auI /zEP“ (u)du, two
o,

conditions at two nodal surfaces, fpu (i a, /2), and two weighted residual method (WRM) equations
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The elements of G;, and H,, are given in reference 1.

The expansion coefficients determined above are related to node average flux and nodal surface average fluxes

as follows;
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From the definition of the partial currents,
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and noting @, (u) = REU (u) one can relate the outgoing partial currents to the incoming partial currents by
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where ], = 2-D column vector (Jl_us’ Jz_us) and @, = 2-D column vector (qqus,qDZUS). They are the u-

directed partial currents and 1-D fluxes, respectively, at the right surface (s=r) or at the left surface (s=I) of the

node. The 2x2 diagonal matrices, Q,, (k =0,1,2,3) are defined in reference 5. If one substitutes these

equations into the nodal balance equation, Eg. (3), one finds that the node average flux is given by

9=(A+12Q,)"s, (32)
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In deriving Egs. (31) and (32), we used J, = j.. —j (s=1,r). Equations (31) and (32) constitute the basic
nodal coupling relations in the UNM formulation which have to be solved for Eand

Jis (u =xY,z;s =1, r). They are the same as those of the UNM formulation of the ANM?® except for the fact

that the diagonal matrices éiu and |:|iu (i=3,4) and vector Liu (i=1,2) are defined differently. Because of Eq.

(13) and Eq. (29), L., (i=1,2) in the AFEN option is given by nine unknown nodal fluxes of the given node;
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Because the coefficients, L, (i =1 2), are given by corner point fluxes, extra relations are needed for them.

One can use the five point relations derived from the corner point leakage balance condition®;
C C R
T + T + T + Ty + Tiq) =qy. (35)

The subscript ij denotes one of the four corner points in the given node. (pfj (S =C,R,L, B,T) denotes the
flux at the corner point designated by ij (s=C), and corner point fluxes at its right (s=R), its left (s=L), its bottom
(s=B) and its top (s=T). The coefficients TS (S =C,R,L,B T) and Q are defined in reference 4.

Equation (35) forms CPB equations and are extra relations to be solved in the AFEN option of the UNM
formulation. The corner point fluxes from the solution of the CPB equations are used to determine the
L, (i=0,1,2). For numerical enumeration, however, one must take precaution against the direct use of Eq. (34).
Equation (34) is poorly conditioned because subtraction of large flux values is involved in determining the

transverse leakage expansion coefficients that are smaller in numerical value by an order than fluxes. Therefore,



use of L, (i=0,1,2) determined directly from substituting large but inaccurate flux values from intermediate
iteration stages into Eq. (34) may lead to erroneous results or fail to produce the converged solution. As will be
discussed later, we face non-convergence difficulty in 3-D applications and fine-mesh UNM calculations of the
AFEN option. This appears a drawback of the UNM formulation for the AFEN method. But the non-

convergence difficulty can be easily avoided by enumerating L, using an under-relaxation scheme as follows;

L™ =%+ (L, -L2%) (=042) (36)

where Lr;ﬁw and L?Ld are transverse leakage coefficients of the current and the previous steps, respectively.

L

(< 1) is the relaxation parameter.

iu 1s the transverse leakage coefficients determined directly from Eq.(34) using flux values of the current step.
Equations (31) and (32) in combination with Egs. (25), (26), and (35) constitute a set of the basic nodal coupling
relations in the UNM formulation. Except for Eq. (35), they are practically the same as those in the steady-state
NEM formulation. In order to solve these relations, therefore, one can use the same iterative procedure
introduced in reference 6 for NEM. Alternatively, one can utilize nonlinear coarse mesh finite difference

(CMFD) schemes that are discussed in some detail in reference 5.

3. Numerical Results and Discussion

The UNM utilizes the transverse integration of the group diffusion equation while the AFEN method is not.
Besides, the UNM above for the transient AFEN calculations differs from the transient AFEN method
implemented recently by Kim et al.® Unlike their formulation which derives the intranodal flux distribution from
the inhomogeneous 2-G diffusion equations similar to Eq. (2), the UNM formulation here derives it from the
homogeneous 2-G diffusion equation as in the case of the static case. Consequently, the nodal coupling equations
in the UNM formulation are of the same form regardless of the static and transient problems, even though the
coupling coefficients change every time step. This as well as simplicity of nodal coupling relations may
contribute to improved computational effectiveness of the UNM formulation for the transient AFEN calculations.
In order to examine the computational effectiveness of the UNM formulation, we analyzed one of the well-
known OECD/NEA transient benchmark problems designated as Al transient problem. Figure 1 shows the
OECD/NEA PWR core. The Al problem is an octant core symmetry problem in which the transient is induced
by the sudden withdrawal of the control rod located at the center of the core at the cold zero power. Table 1
shows the comparison of the UNM solutions of the AFEN option and several TINM solutions with reference
solutions’ in terms of initial steady state critical soluble boron concentration and 3-D power peak (F,) and
transient parameters such as power peak time and peak power. The NEM/QTL and the ANM/QTL are the NEM
and the ANM solutions, respectively, with quadratic transverse leakage approximation (QTL). The ANM/ATL is
the ANM solution with the analytic transverse leakage, Eqg. (4), the expansion coefficients of which are
determined in the same way as the QTL. There are two AFEN method solutions; AFEN/MSS and AFEN/CPB.



The AFEN/MSS denotes the AFEN solution in which corner point fluxes are obtained by the method of
successive smoothing. In the AFEN/CPB solution, corner point fluxes are obtained from the CPB equation . The
results of 1x1 radial node per assembly (N/A) calculations show that the AFEN/CPB is in better agreement with
the 4x4 N/A reference solution than the three TINM calculations and the AFEN/MSS. The 2x2 N/A calculations
enhance greatly the agreement of the three TINM and AFEN calculations with the reference results. The 2x2
N/A AFEN/CPB result appears the closest to the reference calculation. For further comparison, Figure 2 shows
the transient core power excursion behavior with time. It is observed that the AFEN/CPB predicts more closely
the transient core power excursion behavior predicted by the reference calculation. The last row of Table 1
compares the CPU times of the TINM and AFEN analysis of the Al problem. Unlike the case of the TINM, the
AFEN method requires solving the corner point balance equation. Because of this, the AFEN method takes

longer CPU time than the TINM considered here.

4. Conclusion

The AFEN method formulation proposed recently for the transient reactor analysis has been tested in terms of 2-
D transient problems only. Therefore, this paper may be the first-ever presentation on the performance of the
AFEN method in terms of 3-D transient problems. As observed in the static applications, the results of
OECD/NEA PWR transient problem Al show that AFEN method outperforms the popular TINM in prediction
accuracy at the expense of computational time. This encourages further tests of the UNM formulation here with

many different 3-D transient problems.
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Figure 1. Core Configuration of OECD/NEA Transient Benchmark Problem Case Al

Table 1. UNM Analysis for OECD/NEA Transient Benchmark Problem Case Al

4x4x36 N/FA IxIx18 N/FA 2X2x18 N/FA

PAN- | ANM/ NEM | ANM | ANM | AFEN | AFEN | g | ANM | ANM | AFEN | AFEN

THER | QTL /QTL | /ATL | /MSS | /CPB /QTL | /ATL | /MSS | /CPB
Soluble

ﬁ)%rr% 5612 | 561.7 | 567.3 | 566.1 | 563.1 | 5586 | 560.0 | 5625 | 562.0 | 561.3 | 559.8 | 558.0

28792 | 2.8787 | 2.8305 | 2.8482 | 2.8595 | 2.8836 | 2.8899 | 2.8693 | 2.8763 | 2.8782 | 2.8859 | 2.9368

Peak
P?y(\]/)er 126.78 | 1338 | 80.83 | 97.75 | 1078 | 1475 | 1388 | 1221 | 1301 | 1355 | 1474 | 1411

Peak
Isec 0.5375 | 0.5450 | 0.6975 | 0.6425 | 05975 | 0.5050 | 0.5200 | 0.5725 | 0.5575 | 05425 | 0.5150 | 0.5200

PU
slg?: - - 93 %4 94 108 126 518 520 532 572 729

Time step : 465 steps
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Figure 2. Core Power Excursion Behavior in OECD/NEA Transient Benchmark Problem Case Al
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