SMART

가

Equivalent Bending Stiffness of Discontinuous Beam with Periodic Cross Sections for Dynamic Analysis of SMART CEDM

Abstract

Equivalent bending stiffness of discontinuous beam with periodic cross sections is derived and its usability is verified by finite element analysis for natural frequency. It is general to use FE analysis with beam model for dynamic analysis of slender structures. The analysis efficiency is very low, however, if the beam structure has many discontinuous cross sections. The degree of freedom of FE model of the structure with many discontinuous points is very large. The mover of linear pulse motor type CEDM of SMART is a beam structure with many periodically repeated cross sections and its FE model is very complex due to the discontinuity between sections. The equivalent bending stiffness of this paper makes it possible to build simple FE model of the beam structure with many periodically repeated cross sections. The equation driven for the equivalent bending stiffness is very simple and useful as the results of example study show.

2001

가 . SMART 49 가 . 가 . • 가 . 가 . 가 가 . • 가 [1,2]. 가 • 가 가 가 • 가 가 [3]. 2. 가 가 2.1 SMART 가 1. 가 가 가 EI · 2 가 가 가 가 가 . 가 가 가 . 가

$$I_{A} = \frac{\mathbf{p}}{4} (R_{o}^{4} - R_{i}^{4})$$
(1)

가

$$I_{B} = \frac{1}{2} (R_{o}^{4} - R_{i}^{4}) (\boldsymbol{q}_{2} - \boldsymbol{q}_{1})$$
⁽²⁾

$$A_A = \boldsymbol{p}(R_o^2 - R_i^2) \tag{3}$$

$$A_{B} = 2(R_{o}^{2} - R_{i}^{2})(\boldsymbol{q}_{2} - \boldsymbol{q}_{1})$$
(4)

.

가

$$\begin{array}{cccc} & & & & & & & \\ & & M & 7 \\ & & & & & & & \\ & & & 3 & q & & & & & L \end{array}$$

 $\begin{array}{ccc} M & 7 \\ & & \\ \hline \end{array} \\ \begin{array}{c} x \\ \hline \end{array} \\ \begin{array}{c} q \\ x \end{array} \end{array} \begin{array}{c} y \\ y \\ \end{array} \\ \begin{array}{c} y \\ y \\ \end{array} \end{array}$

$$\boldsymbol{q}(x) = \int_{0}^{x} \frac{M}{EI(x)} dx$$
(5)

$$y(x) = \int_{0}^{x} \boldsymbol{q}(x) dx \tag{6}$$

$$(5) \qquad q(x)$$

$$\boldsymbol{q}(x) = \frac{M}{E} \left(\int_{0}^{L_{1}} \frac{1}{I_{1}} dx + \int_{L_{1}}^{L_{1}+L_{2}} \frac{1}{I_{2}} dx + \mathbf{K} + \int_{L_{1}+\mathbf{K}+L_{p-1}}^{x} \frac{1}{I_{p}} dx \right)$$

$$= \frac{M}{E} \left[\sum_{i=1}^{p-1} \frac{L_{i}}{I_{i}} + \frac{1}{I_{p}} \left(x - \sum_{i=1}^{p-1} L_{i} \right) \right]$$

$$p \qquad \mathbf{X} \qquad (8)$$

$$\boldsymbol{q}(\boldsymbol{p},\boldsymbol{x}) = \frac{M}{E} \left(\sum_{i=1}^{p-1} \frac{L_i}{I_i} + \frac{\boldsymbol{x}}{I_p} \right)$$
(8)

가

•

.

•

$$\boldsymbol{x} = \boldsymbol{x} - \sum_{i=1}^{p-1} L_i \tag{9}$$

(7) (6)

р

.

$$y(x) = \frac{M}{E} \int_{0}^{x} \left[\sum_{i=1}^{p-1} \frac{L_i}{I_i} + \frac{1}{I_p} \left(x - \sum_{i=1}^{p-1} L_i \right) \right] dx$$
(10)

y(x)

x

$$y(p, \mathbf{x}) = \frac{M}{E} \left[\sum_{k=1}^{p-1} \int_{0}^{L_{k}} \left(\sum_{i=1}^{k-1} \frac{L_{i}}{I_{i}} + \frac{\mathbf{x}}{I_{k}} \right) d\mathbf{x} + \int_{0}^{\mathbf{x}} \left(\sum_{i=1}^{p-1} \frac{L_{i}}{I_{i}} + \frac{\mathbf{x}}{I_{p}} \right) d\mathbf{x} \right]$$

$$= \frac{M}{E} \left[\sum_{k=1}^{p-1} \left(\sum_{i=1}^{k-1} \frac{L_{i}L_{k}}{I_{i}} + \frac{L_{k}^{2}}{2I_{k}} \right) + \sum_{i=1}^{p-1} \frac{L_{i}}{I_{i}} \mathbf{x} + \frac{1}{2I_{p}} \mathbf{x}^{2} \right]$$
(11)

р

$$\boldsymbol{q}_{q} = \boldsymbol{q}(q, L_{q}) = \frac{M}{E} \left(\sum_{i=1}^{q-1} \frac{L_{i}}{I_{i}} + \frac{L_{q}}{I_{q}} \right)$$

$$= \frac{M}{E} \sum_{i=1}^{q} \frac{L_{i}}{I_{i}}$$
(12)

•

X

.

$$y_{q} = y(q, L_{q}) = \frac{M}{E} \left[\sum_{k=1}^{q-1} \left(\sum_{i=1}^{k-1} \frac{L_{i}L_{k}}{I_{i}} + \frac{L_{k}^{2}}{2I_{k}} \right) + \sum_{i=1}^{q-1} \frac{L_{i}L_{q}}{I_{i}} + \frac{L_{q}^{2}}{2I_{q}} \right]$$

$$= \frac{M}{E} \sum_{k=1}^{q} \left(\sum_{i=1}^{k-1} \frac{L_{i}L_{k}}{I_{i}} + \frac{L_{k}^{2}}{2I_{k}} \right)$$
(13)

2.3

가

•

가 가

가

•

 $L_{2n-1} = L_A, \ L_{2n} = L_B$ $n = 1, 2, 3, \Lambda$ (14) $I_{2n-1} = I_A, \ I_{2n} = I_B$ $n = 1, 2, 3, \Lambda$ (15) 가 가 •

т

1: q = 2m

$$\boldsymbol{q}_{q} = \frac{M}{E} \sum_{i=1}^{m} \left(\frac{L_{A}}{I_{A}} + \frac{L_{B}}{I_{B}} \right) = \frac{M}{E} m \left(\frac{L_{A}}{I_{A}} + \frac{L_{B}}{I_{B}} \right)$$
(16)

$$y_{q} = \frac{M}{E} \left[\sum_{k=1}^{2m} \left(\sum_{i=1}^{k-1} \frac{L_{i}}{I_{i}} \right) L_{k} + \frac{m}{2} \left(\frac{L_{A}^{2}}{I_{A}} + \frac{L_{B}^{2}}{I_{B}} \right) \right]$$

$$= \frac{M}{E} \left[\frac{m^{2} (L_{A} + L_{B})}{2} \left(\frac{L_{A}}{I_{A}} + \frac{L_{B}}{I_{B}} \right) + \frac{m}{2} L_{A} L_{B} \left(\frac{1}{I_{A}} - \frac{1}{I_{B}} \right) \right]$$

$$?^{\dagger} \qquad ((18)) \qquad (19), \quad (20) \qquad .$$
(17)

$$L_A = L_B = \frac{L}{q} = \frac{L}{2m} \tag{18}$$

$$\boldsymbol{q}_{q} = \frac{ML}{E} \frac{I_{A} + I_{B}}{2I_{A}I_{B}}$$
(19)

$$y_{q} = \frac{ML^{2}}{2E} \left(\frac{I_{A} + I_{B}}{2I_{A}I_{B}} - \frac{I_{A} - I_{B}}{4mI_{A}I_{B}} \right)$$
(20)

2 :
$$q = 2m - 1$$

가

$$\boldsymbol{q}_{q} = \frac{M}{E} \left[\sum_{i=1}^{m} \left(\frac{L_{A}}{I_{A}} + \frac{L_{B}}{I_{B}} \right) - \frac{L_{B}}{I_{B}} \right] = \frac{M}{E} \left[m \left(\frac{L_{A}}{I_{A}} + \frac{L_{B}}{I_{B}} \right) - \frac{L_{B}}{I_{B}} \right]$$
(21)

$$y_{q} = \frac{M}{E} \left[\sum_{k=1}^{2m-1} \left(\sum_{i=1}^{k-1} \frac{L_{i}}{I_{i}} \right) L_{k} + \frac{m}{2} \left(\frac{L_{A}^{2}}{I_{A}} + \frac{L_{B}^{2}}{I_{B}} \right) - \frac{L_{A}^{2}}{2I_{A}} \right]$$

$$= \frac{M}{E} \left[\frac{m^{2} (L_{A} + L_{B})}{2} \left(\frac{L_{A}}{I_{A}} + \frac{L_{B}}{I_{B}} \right) + \frac{m}{2} L_{A} L_{B} \left(\frac{1}{I_{A}} - \frac{1}{I_{B}} \right) \right] \qquad (22)$$

$$- \frac{M}{E} \left[m \left(\frac{L_{A}}{I_{A}} + \frac{L_{B}}{I_{B}} \right) L_{B} - \frac{L_{B}^{2}}{2I_{B}} \right]$$

$$? \downarrow \qquad ((23)) \qquad (24), (25) \qquad .$$

$$L_A = L_B = \frac{L}{q} = \frac{L}{2m-1} \tag{23}$$

$$\boldsymbol{q}_{q} = \frac{ML}{E} \left[\frac{m}{2m-1} \frac{I_{A} + I_{B}}{I_{A}I_{B}} - \frac{1}{(2m-1)I_{B}} \right]$$
(24)

$$y_{q} = \frac{ML^{2}}{2E} \left[\frac{2m^{2}}{(2m-1)^{2}} \frac{I_{A} + I_{B}}{I_{A}I_{B}} - \frac{m}{(2m-1)^{2}} \frac{3I_{A} + I_{B}}{I_{A}I_{B}} + \frac{1}{(2m-1)^{2}I_{B}} \right]$$
(25)

가

(19), (24) (20), (25) 7; . 가

가

$$\lim_{m \to \infty} \boldsymbol{q}_q = \frac{ML}{E} \frac{I_A + I_B}{2I_A I_B} = \frac{ML}{EI_{eq}}$$
(26)

$$\lim_{m \to \infty} y_p = \frac{ML^2}{2E} \frac{I_A + I_B}{2I_A I_B} = \frac{ML^2}{2EI_{eq}}$$
(27)

가 . 가
$$EI_{eq}$$
 가

 I_{eq}

.

$$I_{eq} = \frac{2I_A I_B}{I_A + I_B} \tag{28}$$

 (28)
 가
 가

 .
 가
 가

3. 가

,

3.1

2			가		ABAQ	QUS
		가 2m				
			17			가
가				가		
		2			1	. 가
	(28)					

1.

	E (GPa)	\boldsymbol{r} (kg/m ³)	R_i (m)	R_{o} (m)	$A (m^2)$	$I(m^4)$
А	210	7800	0.08	0.10	2.830×10-3	2.900×10 ⁻⁶
В	210	7800	0.08	0.10	0.566×10 ⁻³	0.580×10 ⁻⁶
가	210	7800	•	•	1.698×10 ⁻³	0.967×10 ⁻⁶

.

A 가

가

•

100 가

,

0		
4	•	

1	3	100	99	10	21	106	105
2	5	101	100	11	23	93	92
3	7	99	98	12	25	101	100
4	9	100	99	13	27	109	108
5	11	100	99	14	33	100	99
6	13	105	104	15	35	106	105
7	15	106	105	16	51	103	102
8	17	103	102	17	99	100	99
9	19	96	95	가	1	102	101

	Bending Mode (Hz)							Longitudinal Mode (Hz)		
()	1	2	3	4	5	6	7	1	2	3
1(3)	18.561	141.85	349.58	879.63	1320.9	1856.0	2898.8	473.06	1945.8	3418.5
2(5)	17.738	121.95	374.68	733.35	1115.3	2217.5	2850.6	479.83	1336.3	3243.0
3(7)	17.529	114.92	342.73	716.88	1214.0	1777.0	2316.5	481.61	1397.0	2128.1
4(9)	17.445	112.27	326.27	672.59	1169.1	1798.3	2516.7	482.34	1419.2	2258.3
5(11)	17.403	110.99	318.31	645.36	1112.3	1731.3	2489.3	482.70	1429.8	2316.0
6(13)	17.380	110.27	313.96	629.94	1073.7	1661.8	2403.5	482.91	1435.8	2346.8
7(15)	17.365	109.83	311.33	620.67	1049.3	1611.4	2321.3	483.04	1439.5	2365.3
8(17)	17.355	109.54	309.62	614.71	1033.6	1577.1	2258.7	483.13	1441.9	2377.3
9(19)	17.348	109.34	308.45	610.66	1022.9	1553.6	2213.8	483.19	1443.6	2385.5
10(21)	17.343	109.19	307.60	607.78	1015.4	1537.1	2181.6	483.23	1444.8	2391.4
11(23)	17.339	109.08	306.97	605.65	1009.9	1525.0	2158.0	483.27	1445.8	2395.8
12(25)	17.336	109.00	306.5	604.04	1005.8	1516.0	2140.4	483.29	1446.5	2399.1
13(27)	17.334	108.93	306.12	602.79	1002.6	1509.0	2126.9	483.31	1447.0	2401.8
14(33)	17.329	108.80	305.38	600.35	996.38	1495.7	2101.1	483.35	1448.1	2406.9
15(35)	17.328	108.77	305.22	599.8	995.02	1492.8	2095.6	483.36	1448.3	2408.1
16(51)	17.324	108.65	304.53	597.54	989.37	1480.8	2072.9	483.40	1449.4	2412.9
17(99)	17.321	108.57	304.08	596.08	985.78	1473.3	2059.0	483.42	1450.1	2416.0
가	17.323	108.56	303.97	595.66	984.67	1470.9	2054.4	648.59	1945.8	3243.0

[1]	, SMART-CD-DW620-00, Rev.00, CEDM		
[2]	, SMART-CD-DW620-02, Rev.00,		
[3]	, SMART-CD-CA620-05, Rev.00,	가	가
[4] Ger	e & Timoshenko, "Mechanics of Materials," Second Edition.		