

2001

Abstract

A method of fabricating large-grained UO_2 pellets has been developed for high burnup fuel. KAERI and KNFC jointly have made an experiment to manufacture proto-type pellets in production line using this method. Large-grained UO_2 pellets have been manufactured without difficulties, and they have a grain size larger by 80% than the conventional pellet. In addition, they exhibit lower density increment by 30% after the resintering test.

•

1.

(Xe, Kr) mechanism

,

(UO₂)

. UO_2 가 . 가 1970 . 가 Nb_2O_5 , TiO_2 , Cr_2O_3 , Al_2O_3 , SiO_2 [1]. Nb₂O₅ 0.3wt% 가 40μm. TiO₂ UO_2 60μm [2] (가 가 0.1 w t% 가 8 μm). 가 가 가 , , 가 가 2 가 UO_2 . [3], UO_2 , 가 UO_2 . UO_2 가 가 가 , 가 가 UO₂ . [4]. U₃O₈ UO_2 UO_2 [5]. U₃O₈ U_3O_8 $U_{3}O_{8}$ UO_2 5 wt%

.

・ 15µm 80% 가 spec , 7 , 7 , 7 , 2 () 1 kg batch

.

2.

2.1. UO_2 1 UO_2 (, , ,) , 450-500 U_3O_8 UO_2

1300 U₃O₈ . . U₃O₈ U₃O₈ 5% UO_2 80% , 2(a) 2(b) , 2(c) . U₃O₈ U₃O₈ 2(c) .

2.2

DC-UO₂ 150g 3 batch . A 1 , B batch 4 wt% U_3O_8 , C batch batch 6 w t% U₃O₈ . batch 1 kg bach size 2 batch . 2 , E batch 5 wt% U_3O_8 D batch 1 .D Ebatch , (1250 /1 /)

. 1700 /24 / . Image analysis program

3.

5.920, 5.939, 5.963 g/cm³ Batch A, B, C 가 batch 가 가. U_3O_8 . Batch A, B, C 가 10.499, 10.416, 10.462 g/cm³ batch A C 가 batch B (0.3~0.4%TD) . 3(a), 3(b), 3(c) Batch A, B, C . batch 가 . 3 4 batch A C . Batch A C 1.5μm 9μm 가 가 . . Batch A, B, C 5(a), 5(b), 5(c) . 7.8, 11.9, 14.0 μm Batch A, B, C . 6 w t% (batch C) U₃O₈가 UO₂ 가 80% 가 .Batch A (batch A) batch A , batch B

가 15 20μm . Batch C . 가 가 가 가 • UO₂ 가 가 가 U_3O_8 가 , 가 U₃O₈ . 가 UO_2 , UO 가 U_3O_8) (,가 가 • , 가 1 . Batch C batch 가

, batch C 가 가 batch A 30% . batch가 가 가 , 가 . 가 3 , batch C 가 • . 가 6 batch A, B, C , batch 가 가가 가 가 . . , batch C batch A batch C 가 batch 가 . А • , U₃O₈가

4.

.

6 w t% U₃O₈ 가 UO₂ • 가 7.8 μm 14.0 μm 80% 가 . • 가 0.505 % TD 0.352 % TD 30% . • (1.5, 9 μm) . [1] , KAERI/RR/1735/96.

- [2] , '97 (), pp 43-48.
- [3] J.B. Ainscough et al, IAEA-SM-233/16, 1979.
- [4] Y. Harada and S. Doi, J. Nucl. Sci. & Tech. 35 (1998) 411.

•

[5] , ⁽99 (II)

batch			가	
	(%TD)	(<i>µ</i> m)	(%TD)	フト (µm)
А	95.45	7.8	0.507	4.2
В	95.16	11.9	0.473	4.0
С	95.43	14.0	0.360	2.1

1. batch A, B, C

3. batch (a) batch A, (b) batch B, (c) batch C

5. , (a) batch A, (b) batch B, (c) batch C.

가.