

Abstract

The applicability of CHF look-up table method is assessed for the experimental CHF data with square-lattice rod bundles under various thermal-hydraulic conditions including SMART core conditions. The local thermal-hydraulic conditions inside the test bundles are calculated by the subchannel analysis code MATRA, and used for the evaluation of CHF with HBM and DSM. The geometrical correction factors for the channel diameter(K₁), the spacer grids(K₃), and the heated length(K₄) are applied to the CHF table. Tong's F-factor and Groeneveld's K₅ factor are employed to the test bundles with non-uniform axial power shapes. Total number of 3184 data points from 53 kinds of test bundles are evaluated in this study. As the result, the mean/standard deviation of P/M ratio by HBM and DSM are calculated as 1.022/0.079 and 1.069/0.245, respectively.

2001

CHF lookup table CHF , [1]. 1976 USSR Academy of Science CHF , 가 CHF 가 , 1986 Groeneveld CHF [2]. 가 30000 1995 AECL-IPPE CHF table[3] . CHF CHF 가 가 가 , 가 interpolation . CHF extrapolation , CHF CHF , 가 . 가 CHF 가 . CHF CHF RELAP5 CATHARE . Groeneveld 1986 CHF 가 8mm , (bundle 가 effect spacer grid effect) , [4,5]. bundle effect 가 . Groeneveld [6] CHF 가 (gap size, unheated wall, heater surface curvature) , Chun [7] CHF CHF CHF CHF 가 [8]. CHF 가 CHF . 가 invert point (, CHF , 가 가)가 . limiting critical quality (, CHF 가)가 step 3~9 가 Kirillov[1] . SMART CHF CHF table 가 . CHF MATRA

가.

2 CHF

2.1

	9	9 ~ 25						
				EPRI	SIEMENS			
SMART			SR - 1	CHF	[9]			
			1					
	,	1	2		가			
				. Т	S-512 ~ TS-517	가		

2.2

CHF MATRA 1 . 3 . 가 CHF . 가 CHF가 가 , . 가 CHF CHF CHFR . ,

.

3.

5.

3.1

CHF table . 1986 AECL CHF table[2] 15000 CHF 1~200 bar 15 , , 0~7500 kg/m²/s 14 -0.5~1.0 21 1995 , AECL-IPPE CHF table[3] 30000 , 1~200 bar 21 , $0 \sim 8000 \text{ kg/m}^2/\text{s}$ 20 , -0.5~1.0 23 CHF . CHF table 8 mm . 가 가 , 1986 CHF table

(d_{he}) 7 [10].

 $K_1 = (8/d_{he})^{1/3}$, for $2 < d_{he} < 32 \text{ mm}$ (1)

$$K_1 = 0.63$$
 , for $d_{he} > 32 \text{ mm}$

 1995 CHF table
 71
 (d_hy)
 ,
 1/2
 71

$$K_{1} = (8/d_{hy})^{1/2}$$
, for $3 < d_{hy} < 25 \text{ mm}$ (2)
 $K_{1} = 0.6$, for $d_{hy} > 25 \text{ mm}$
(K₃) 7[†] (K₄) table

$$K_{3} = 1 + 1.5 \cdot K_{grid}^{0.5} \cdot \left(\frac{G}{1000}\right)^{0.2} \cdot \exp\left(-0.1 \times \frac{L_{sp}}{d_{hy}}\right)$$
(3)

$$K_{4} = \exp\left(e^{2a} \cdot d_{hy}/L\right) \tag{4}$$

,

,

, K_{grid}, L_{sp}. L 가 **a** homogeneous model 가.

$$\boldsymbol{a} = \boldsymbol{c} / [\boldsymbol{c} + (1 - \boldsymbol{c}) \boldsymbol{r}_{g} / \boldsymbol{r}_{f}]$$
CHF
(5)

$$CHF = CHF_{D=8mm} \times K_1 \times K_3 \times K_4 \tag{6}$$

가 CHF table HBM(Heat 가. Balance Method) DSM(Direct Substitution Method) 2 "CHF line" (6) . , 가 CHF -"heat balance line" , .

 가
 "heat balance line"
 가
 . HBM
 CHF
 CHF

 가
 (X₁)
 가
 CHF
 (X₂)가
 CHF
 CHF

(q_{нвм}).

.

,

DSM		CHF	가					CHF	(q _{exp})
X ₂	,		CHF	가	DSM	CH	IF(q _{DSM})		
	CHF	table		DSM	CHF		. CI	ΗF	
		,	2			가	CHF	가	
DSM	P/M	н	BM	P/M			가.		
				С	HF		CHF	table	

4 . 1986 CHF table 1995 CHF table CHF , 1995 CHF table CHF .

가 CHF table .) , K₃ .

(, 가 P/M 가 HBM 가 4%, DSM 12% . CHF 가 가 . 3 P/M . CHF table 1000 kg/m²/s) CHF 가 (. 1000 ~ 2000 kg/m2/s CHF 가 0.3 100 bar CHF CHF table CHF . HBM 4 2% 8% ,

, DNBR 2~3 가 가 . HBM 가

가 기 가 HBM 가 DSM CHF 가 , one-sided tolerance limit DSM DNBR

 1986 AECL CHF table
 1.413 (=1.012 + 1.699*0.236), 1995 AECL-IPPE CHF table 1.521 (= 1.069 + 1.699*0.266) + 1.699*0.266)

 1.699*0.266)
 7 \cdots

4

가 CHF P/M CHF 가 가 (K₃) 가 (TS-28) , . 1995 AECL-IPPE CHF table 가 (d_{hy}) K, 가 , 5 가 5 가가 CHF 가 1986 AECL CHF table (d_{he}) K_1 matrix 가 12~14 mm) (가 11.5~12.5 mm , CHF , guide tube 1995 CHF table CHF table 가 1995 CHF table K_1 (8/d)ⁿ . n=0.5가 가

3.2

CHF "가"

CHF CHF , Tong F-factor [11] 가 , 기 ,

7 · . CHF table Tong F-factor(F_{Tong}) (F_{BLA}) [10]. F-factor

$$F_{Tong} = \left[C \cdot \int_{z_{ons}}^{z_c} q'' e^{-C(z_c - z)} dz \right] / \left[q''_{loc} \left\{ 1 - e^{-C(z_c - z_{ons})} \right\} \right],$$
(7)

$$F_{BLA} = \left[\int_{z_b}^{z_c} q''(z) dz \right] / \left[q''_{loc} \left(z_c - z_b \right) \right].$$
(8)

$$C = 5.906 \times \left(1 - c_{c}\right)^{4.31} / \left(G / 1356\right)^{0.478}.$$
(9)

1986 AECL CHF table K_5 F-factor1995AECL-IPPE CHF table.

2		,				6		
		HBM	DSM	가	CHF			
	CHF							

.

,

DSM CHF 가

.

,

CHF_{EU} (CHF at equivalent uniform heat flux condition)

(F _{NU})	CHF_{NU} (CHF at non-uniform heat flux condition)	
	$CHF_{EU}(z) = CHF_{D=8mm}[P, G, c(z)] \times K_1 \times K_3 \times K_4$	(10)

$$CHF_{NU}(z) = CHF_{EU}(z)/F_{NU}(z)$$
(11)

CHF table CHF_{EU} , 가

	CI	ΗF	C	CHF		CHF			가	
					,	F_{Tong}	**	가 "		
	, F_{Tong}		가 CH	IF _{NU}	CHF		. F _{BLA}			가
	가		F_{Tong}					,		가
	CHF _{NU}	CHF					(11)	C	HF	CHF
가	P/M	가	. DSM	가	P/M		5	3		

CHF table 7% CHF , 20% CHF .

, HBM CHF , CHF .

D	SM	CHF	(Z _{CHF})	,	CHF	HBM	가
		CH	łF				
				가	가		
	$\boldsymbol{c}(z) = \boldsymbol{c}_{in} + f$	$\hat{\boldsymbol{c}} \times \{ \boldsymbol{c}_{iso} (z) \}$	$)-c_{_{in}}\}$			(1	2)
,							

$$\mathbf{c}_{iso}(z) = \mathbf{c}_{in} + \frac{4}{d_{hc}Gh_{fg}} \int_{0}^{z} q''(z) dz$$
(13)

$$f \equiv \left[\mathbf{c} \left(z_{CHF} \right) - \mathbf{c}_{in} \right] / \left[\mathbf{c}_{iso} \left(z_{CHF} \right) - \mathbf{c}_{in} \right] \quad \text{, at measured CHF condition.}$$
(14)
CHF (CHF_P)

$$CHF_{P}(z_{CHF}) = CHF_{D=8mm}[P, G, c(z_{CHF})] \times K_{1} \times K_{3} \times K_{4}/F_{NU}(z_{CHF})$$

$$CHF , \qquad (15)$$

$$Q_{P}(z_{CHF}) = CHF_{P}(z_{CHF}) \times \mathbf{x}_{h} L / F_{z}(z_{CHF})$$
(16)

heat balance

$$Q_{Bal} = \left\{ \left[c\left(z_{CHF}\right) - c_{in} \right] \middle/ \left[4 \int_{0}^{z_{c}} F\left(z\right) dz \middle/ \left(d_{he}Gh_{fg}\right) \right] \right\} \times \mathbf{x}_{h}L$$
(17)

CHF $Q_P = Q_{Bal}$. HBM

5 가 P/M CHF 3% . 7 9% . , CHF DSM HBM CHF table CHF . , 가 DSM CHF 40%

.

.

4.

•

.

[1] P.L. Kirillov & I.P. Smogalev, On the look-up tables for the critical heat flux in tubes (history and problems), NURETH-7, 2558-2582 (1995).

[2] D.C. Groeneveld, et. al., 1986 AECL-UO critical heat flux lookup table, Heat Transfer Engineering 7, 46-62 (1986).

[3] D.C. Groeneveld, et. al., The 1995 look-up table for critical heat flux in tubes, Nuclear Engineering Design 163, 1-23 (1996).

[4] D.H. Hwang, et. al., Development of a bundle correction method and its application to predicting CHF in rod bundles, Nuclear Engineering Design 139, 205-220 (1993).

[5] M. Lee, A critical heat flux approach for square rod bundles using the 1995 Groeneveld CHF table and bundle data of heat transfer research facility, Nuclear Engineering Design 197, 357-374 (2000).

[6] Groeneveld, et. al., The effect of fuel subchannel geometry on CHF, NURETH-5, 683-690 (1992).

[7] T.H. Chun, et. al., Assessment of a tube-based bundle CHF prediction method using a subchannel code, Annals of Nuclear Energy 25, 1159-1168 (1998).

[8] I.L. Pioro, et. al., Some problems for bundle CHF prediction based on CHF measurements in simple flow geometries, Nuclear Engineering Design 201, 189-207 (2000).

[9] , , , SMART CHF , 2000 , (2000).

[10] D.C. Groeneveld & L.K.H. Leung, Tabular approach for predicting critical heat flux and post-dryout heat transfer, NURETH-4, 109-114 (1989).

[11] L.S. Tong, Boiling crisis and critical heat flux, TID-25887 (1972).

|--|

CHF

TS	Bundle shape	Axial power profile	Grid spacing [mm]	Heated length [m]	Rod dia./ pitch [mm]	Mixing vane	Grid loss factor	TDC	# of data
156	TYP-5X5	Uniform	660	4.27	9.5/12.6	R	1.25	0.051	73
157	TYP-5X5	Uniform	660	2.44	9.5/12.6	R	1.25	0.051	78
158	THM-5X5	Uniform	660	2.44	9.5/12.6	R	1.25	0.051	68
160	TYP-5X5	Uniform	559	2.44	9.5/12.6	R	1.25	0.057	67
161	TYP-5X5	Uniform	559	4.27	9.5/12.6	R	1.25	0.057	70
13	THM-5X5	Uniform	534	3.0	10.8/14.3	Р	1.35	0.040	88
20	TYP-5X5	Uniform	545	3.0	9.5/12.7	S	0.75	0.030	61
28	TYP-5X5	Uniform	272	3.0	9.5/12.7	S	0.75	0.072	23
29	TYP-5X5	Uniform	545	3.0	9.5/12.7	S	1.41	0.030	111
30	TYP-5X5	Uniform	545	3.0	9.5/12.7	F1	1.52	0.035	100
31	TYP-5X5	Uniform	545	3.0	9.5/12.7	Swirl	1.40	0.040	97
33	TYP-5X5	Uniform	534	3.0	9.5/12.7	F1	1.35	0.035	102
37	TYP-5X5	Uniform	545	3.0	9.5/12.7	Swirl	1.40	0.055	99
38	TYP-5X5	Uniform	545	3.0	9.5/12.7	Swirl	1.17	0.055	95
39	TYP-5X5	Uniform	545	3.0	9.5/12.7	F1	0.76	0.055	104
40	THM-5X5	Uniform	545	3.0	9.5/12.7	Swirl	1.25	0.055	77
41	THM-5X5	Uniform	545	3.0	9.5/12.7	Swirl	1.56	0.055	79
43	TYP-5X5	Uniform	545	3.0	9.5/12.7	Swirl	1.01	0.055	31
46	TYP-5X5	Uniform	545	3.0	9.5/12.7	Swirl	1.12	0.055	29
47	THM-5X5	Uniform	545	3.0	9.5/12.7	Swirl	1.16	0.055	49
48	THM-5X5	Uniform	545	3.0	9.5/12.7	Swirl	1.49	0.055	49
515	THM-21	Uniform	381	1.83	10.7/14.3	-	1.73	0.050	54
516	THM-21	Uniform	381	1.83	10.7/14.3	-	1.91	0.050	56
3	THM-5X5	Uniform	534	3.0	10.8/14.3	None	0.88	0.010	90
7	TYP-5X5	Uniform	534	3.0	10.8/14.3	None	0.53	0.005	42
11	TYP-5X5	Uniform	545	3.0	9.5/12.7	None	0.62	0.005	81
14	THM-5X5	Uniform	534	3.0	10.8/14.3	None	1.10	0.010	65
16	THM-5X5	Uniform	534	3.0	10.8/14.3	None	0.56	0.010	65
19	TYP-5X5	Uniform	545	3.0	9.5/12.7	None	0.62	0.005	83
21	TYP-5X5	Uniform	545	3.0	9.5/12.7	None	1.40	0.005	88
22	TYP-6X6	Uniform	545	3.0	9.5/12.7	None	1.30	0.005	78
512	TYP-21	Uniform	254	1.83	10.7/14.3	None	0.57	0.005	57
513	THM-21	Uniform	254	1.83	10.7/14.3	None	0.57	0.005	54
514	THM-21	Uniform	254	1.37	10.7/14.3	None	0.57	0.005	38

2.

CHF

TS	Bundle shape	Axial power profile ^(*)	Grid spacing [mm]	Heated length [m]	Rod dia./ pitch [mm]	Mixing vane	Grid loss factor	TDC	# of data
$\begin{array}{c} 108\\ 109\\ 114\\ 124\\ 125\\ 127\\ 131\\ 132\\ 133\\ 134\\ 139\\ 140\\ 144\\ 145\\ 146\\ 148\\ 162\\ 164\\ \end{array}$	TYP-4X4 TYP-3X3 TYP-4X4 TYP-4X4 TYP-4X4 TYP-4X4 TYP-4X4 TYP-4X4 TYP-4X4 TYP-4X4 THM-4X4 TYP-4X4 THM-4X4 TYP-4X4 THM-4X4 TYP-4X4 THM-5X5 TYP-5X5	Top-p(A) Top-p(B) Cosine(E) Cosine (E) Top- p(A) Top-p(A) Top-p(C) Top-p(C) Top-p(C) Top-p(C) Top-p(C) Top-p(C) Top-p(C) Top-p(C) Top-p(C) Cosine (D) Cosine (D)	$508 \\ 508 \\ 660 \\ 508 \\ 559 \\ 660 \\ 508 \\ 660 \\ 813 \\ 813 \\ 813 \\ 660 \\ 660 \\ 660 \\ 660 \\ 659 \\ 550 \\ 550 $	2.44 4.27 2.44 2.44 2.44 4.27 4.27 4.27	$\begin{array}{c} 10.7/14.1\\ 12.7/16.7\\ 10.7/14.1\\ 10.7$	L L R R R R R R R L L R R R R R R R R R	$\begin{array}{c} 1.20\\ 1.20\\ 1.20\\ 0.68\\ 0.68\\ 1.40\\ 1.40\\ 1.40\\ 1.40\\ 1.40\\ 1.82\\ 1.60\\ 1.85\\ 1.90\\ 1.90\\ 1.25\\ 1.25\\ 1.25\\ \end{array}$	$\begin{array}{c} 0.062\\ 0.062\\ 0.051\\ 0.062\\ 0.057\\ 0.057\\ 0.051\\ 0.062\\ 0.051\\ 0.046\\ 0.046\\ 0.046\\ 0.046\\ 0.051\\ 0.051\\ 0.051\\ 0.057\\ 0.057\\ 0.057\\ \end{array}$	29 33 27 33 35 35 36 38 37 27 38 41 39 71 69 74
517	TYP-21	Bottom-p(F)	254	1.83	10.7/14.3	None	0.57	0.005	50

(*)

.

3.	MATRA
Parameter	Value
Subcooled boiling void fraction	Not used
Bulk boiling void fraction	Chexal-Lellouche model
Two-phase friction multiplier	Armand model
Single-phase turbulent friction factor	$0.184 \times \text{Re}^{-0.2}$
Crossflow resistance coefficient (K _{ij})	0.5
Turbulent momentum parameter (s/l)	0.5
Turbulent momentum factor	0
Turbulent mixing	Equal-mass-exchange model
Void drift	Not used
Solution algorithm	Implicit scheme

P/M 가

	Normhan af		1986 AECL	CHF Table		1995 AECL-IPPE CHF Table				
TS	Number of	HI	BM	DS	SM	HI	BM	DS	SM	
	uata	Mean	S	Mean	S	Mean	S	Mean	S	
TS-13	88	1.022	0.086	1.070	0.229	1.075	0.097	1.213	0.298	
TS-20	61	0.942	0.044	0.833	0.132	0.935	0.051	0.832	0.148	
TS-28	23	0.865	0.048	0.673	0.075	0.898	0.049	0.749	0.122	
TS-29	111	1.020	0.080	1.084	0.265	1.022	0.075	1.085	0.264	
TS-30	100	0.992	0.072	0.992	0.246	0.991	0.069	0.993	0.239	
TS-31	97	0.972	0.090	0.951	0.304	0.978	0.085	0.986	0.321	
TS-33	102	0.976	0.069	0.943	0.221	0.971	0.067	0.930	0.207	
TS-37	99	1.002	0.096	1.044	0.326	1.001	0.088	1.054	0.360	
TS-38	95	1.010	0.065	1.056	0.245	1.010	0.060	1.055	0.243	
TS-39	104	1.004	0.073	1.031	0.264	1.003	0.066	1.029	0.250	
TS-40	77	0.981	0.044	0.954	0.139	1.036	0.055	1.106	0.170	
TS-41	79	0.956	0.055	0.883	0.165	1.010	0.056	1.031	0.172	
TS-43	31	0.994	0.020	0.979	0.054	1.014	0.035	1.028	0.089	
TS-46	29	0.954	0.021	0.872	0.058	0.976	0.032	0.933	0.092	
TS-47	49	0.974	0.025	0.932	0.063	1.041	0.033	1.107	0.086	
TS-48	49	0.945	0.018	0.852	0.053	1.008	0.044	1.014	0.114	
TS-156	73	1.041	0.051	1.130	0.168	1.046	0.051	1.159	0.176	
TS-157	78	0.990	0.041	0.981	0.120	0.991	0.049	0.972	0.124	
TS-158	68	0.960	0.045	0.895	0.130	1.014	0.067	1.032	0.173	
TS-160	67	0.984	0.032	0.947	0.100	0.983	0.045	0.946	0.125	
TS-161	70	1.013	0.039	1.027	0.110	1.025	0.058	1.088	0.180	
TS-515	54	0.960	0.073	0.907	0.162	1.012	0.091	1.019	0.201	
TS-516	56	0.963	0.084	0.912	0.184	1.017	0.097	1.023	0.196	
Mixing-vaned	1660	0.987	0.071	0.976	0.222	1.006	0.074	1.029	0.236	
TS-3	90	1.085	0.100	1.265	0.305	1.135	0.100	1.422	0.380	
TS-7	42	1.013	0.080	1.061	0.244	1.007	0.054	1.049	0.187	
TS-11	81	0.976	0.060	0.941	0.185	0.978	0.058	0.951	0.174	
TS-14	65	1.038	0.071	1.123	0.218	1.090	0.065	1.271	0.288	
TS-16	65	1.088	0.095	1.265	0.254	1.142	0.082	1.434	0.325	
TS-19	83	0.996	0.056	0.997	0.160	0.999	0.051	1.006	0.159	
TS-21	88	1.001	0.065	1.009	0.188	1.004	0.064	1.014	0.195	
TS-22	78	1.004	0.061	1.031	0.210	1.002	0.061	1.022	0.202	
TS-512	57	1.076	0.083	1.224	0.228	1.068	0.080	1.202	0.238	
TS-513	54	1.040	0.104	1.098	0.219	1.097	0.103	1.274	0.316	
TS-514	38	0.983	0.076	0.971	0.145	1.048	0.070	1.120	0.151	
No mixing-vaned	741	1.028	0.087	1.090	0.247	1.050	0.094	1.157	0.305	
All data	2401	0.999	0.078	1.012	0.236	1.019	0.083	1.069	0.266	

5. P/M 가								
				1995 AECL-II	PPE CHF Table			
	Number		HBM	1770 11202 1		DSM		
TS	of data	No correction	Tong's F	Groeneveld's	No correction	Tong's F	Groeneveld's	
		ito concenton	model	BLA model	rio concenton	model	BLA model	
TG 100	•	1.076 ¹⁾	1.049	1.066	1.149	1.088	1.132	
TS-108	29	0.032 2)	0.042	0.041	0.085	0.069	0.098	
TC 100	22	1.088	1.050	1.054	1.182	1.107	1.120	
15-109	55	0.041	0.037	0.035	0.097	0.081	0.090	
TC 114	27	1.082	1.034	1.066	1.161	1.066	1.136	
15-114	27	0.040	0.037	0.042	0.098	0.071	0.103	
TS 124 33	33	1.050	1.001	1.021	1.097	0.993	1.040	
15-124		0.070	0.072	0.070	0.116	0.106	0.115	
TS 125	33	1.039	1.011	1.034	1.084	1.021	1.075	
13-125		0.042	0.035	0.045	0.091	0.073	0.097	
TS-127	35	1.030	1.001	1.027	1.065	1.006	1.057	
15-127	33	0.047	0.034	0.051	0.090	0.074	0.097	
TS-131	35	1.098	1.040	1.024	1.234	1.100	1.058	
15-151	33	0.047	0.038	0.050	0.114	0.103	0.119	
TS-132	36	1.058	0.993	0.968	1.131	0.976	0.911	
10 132	50	0.067	0.055	0.059	0.144	0.136	0.145	
TS-133	TS-133 38	0.988	0.937	0.915	0.969	0.838	0.794	
10 100	20	0.105	0.101	0.107	0.292	0.293	0.321	
TS-134	134 38	1.104	1.048	1.038	1.247	1.122	1.094	
		0.051	0.046	0.064	0.128	0.114	0.150	
TS-139	37	1.063	1.019	1.013	1.159	1.054	1.040	
		0.055	0.050	0.054	0.152	0.129	0.140	
TS-140	27	1.045	1.016	1.039	1.086	1.031	1.078	
		0.040	0.037	0.037	0.076	0.070	0.074	
TS-144	38	1.065	1.022	1.018	1.161	1.053	1.043	
		0.042	0.042	0.048	0.119	0.102	0.123	
TS-145	41	1.090	1.032	1.013	1.210	1.0//	1.030	
		0.032	0.047	0.038	0.121	0.113	0.132	
TS-146	39	0.063	1.070	1.075	0.177	1.164	1.165	
		0.003	1.055	1.042	0.177	0.107	0.207	
TS-148	71	0.066	0.064	1.042	0.182	1.144	0.206	
		1.087	1.024	1.007	1 207	1.052	1.006	
TS-162	69	0.059	0.061	0.081	0.151	0.147	0.206	
		1 115	1.037	1.012	1 303	1.076	1 009	
TS-164	74	0.075	0.077	0.086	0.181	0.186	0.224	
		1 182	1 079	1 008	1 461	1 224	1 280	
TS-517	50	0.111	0.072	0.078	0.288	0.189	0.221	
		1.085	1.030	1.027	1.203	1.071	1.062	
All data	783	0.076	0.066	0.077	0.195	0.166	0.199	

1) Mean of P/M, 2) Standard deviation of P/M

1. CHF

5. 가

CHF

