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Abstract

This paper is to apply the well-established coarse mesh finite difference(CMFD) method to
the method of characteristics(MOC) transport calculation as an acceleration scheme. The
CMFD problem is first formulated at the pin-cell level with the multi-group structure. To
solve the cell-based multi-group CMFD problem efficiently, a two-group CMFD formulation
is also derived from the multi-group CMFD formulation. The performance of the CMFD
acceleration is examined for three test problems with different sizes including a realistic
quarter core PWR problem. The CMFD formulation provides a significant reduction in the
number of ray tracings and thus only about 10 ray tracing iterations are enough for the
realistic problem. In computing time, the CMFD accelerated case is about two-three times
faster than the coarse-mesh rebalancing(CMR) accelerated case.

1. Introduction

For whole-core transport calculations, the method of characteristics (MOC) is known to be
adequate because of the easy handling of heterogeneous pin cell geometry via ray tracing.
Iterative ray tracing eliminates the need for constructing a matrix that couples various regions
in the domain as needed in the collision probability method. One of the merits of MOC is
therefore the simplicity of not dealing with a large linear system. Similar to Sn methods, the
angles are discretized in MOC, and the solution accuracy can be adjusted by choosing the
number of angles and ray spacing. However, the convergence rate of MOC is very poor and
an acceleration scheme is essential for practical applications. In some of the earlier work, the
coarse mesh rebalancing(CMR) method was used for the acceleration of MOC calculations.1,2

The results showed that speedups of about 5 to 10 were attainable with the CMR acceleration
in the MOC transport calculations.

The coarse mesh finite difference (CMFD) formulation is widely used as an efficient
implementation of the advanced nodal method.3,4 In this formulation, current correction
coefficients are iteratively determined at each node interface by higher order nodal



calculations. Using the current correction coefficient, it is possible to formulate a transport
equivalent fine-mesh diffusion problem as Smith employed for the acceleration of the
CASMO4 MOC transport calculation.5 In general, the CMFD method showed a convergence
feature of 2 or 3 times faster than the CMR method in solving eigenvalue problems.

In the work here, a two-level CMFD formulation is developed as an alternative
acceleration scheme for MOC based whole-core transport calculations and its performance is
examined against the CMR scheme. The first level is the multi-group CMFD formulation
based on heterogeneous cell cross sections and MOC transport solutions. The second level is
the two-group CMFD formulation based on the multi-group CMFD formulation and the
neutron spectrum of each cell. In this two-level CMFD formulation, the multigroup MOC
calculations are accelerated by the multigroup CMFD calculations which are further
accelerated by the two-group CMFD calculations. For this work, a prototype whole-core
MOC code named DeCART (Deterministic transport based on CMFD Accelerated Ray
Tracing) has been written. In the following section, the features of the DeCART MOC solver
are described first. In Section 3, the multi-group and two-group CMFD formulations are
derived. In Section 4, the iteration algorithm for alternate MOC transport calculation and the
CMFD diffusion calculation is described. In Section 5, the performance of CMFD
acceleration is examined with the focus on the convergence feature and the computational
time.

2. Features of the DeCART MOC Solver

One of the crucial components of an MOC solver is the modular ray tracing module. In
DeCART, a cell-based modular ray-tracing module was established instead of assembly based
modular ray tracing for the purpose of saving memory as well as programming effort.
Another feature of the DeCART MOC solver is a computational technique to reduce the
overhead associated with the evaluation of exponential functions. The two features of the
DeCART MOC solver are described below.

2.1 Cell Based Modular Ray Tracing

Generation of all the ray segments for the whole core geometry requires enormous
computational memory and programming effort. To avoid this problem, the ray segments are
generated only for each cell type and the rays defined for each cell are linked to the rays of
the adjacent nodes through path linking. For path linking, each ray must align itself exactly
with its reflective counterpart at the cell boundary. To meet this condition, the ray spacing and
azimuthal angle are adjusted from the evenly spaced initial angles and uniform ray spacing
determined by the input parameters.6 Specifically, the adjusted azimuthal angles and ray
spacing are determined as:
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In the above equation, aϕ~  are the evenly spaced azimuthal angles which are determined from

the user input for the number of azimuthal angles, and A
~

δ and P mean the ray spacing and
cell pitch, respectively. The “int()” indicates the ceiling function which determines the
greatest integer lower than or equal to its arguments. In the choice of the polar angles and
their weights, the optimal values suggested by Leonard and McDaniel7 are used.

2.2 Approximation of the Exponential Function

The outgoing angular flux in the MOC transport calculation is expressed in terms of
incoming angular flux and the regional angular flux source as:
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where k
mi ,ψ , k

mo,ψ  are the incoming and outgoing angular fluxes in the direction mΩ  at  region

k. Since this expression has to be evaluated for each ray segment, the exponential function is
called very frequently in the iterative MOC calculation and it takes most of the MOC
computational time to compute the exponential value. In DeCART, the exponential values are
pre-calculated and stored as a piecewise linear function using a table form. With this
exponential table, a 60% reduction in the MOC computational time was possible.

3. Pin-Cell Based CMFD Formulation

Using the CMFD formulation, it is possible to construct a pin-cell based diffusion problem
which is equivalent to the MOC transport calculation with finer regions defined. In the
formulation of the CMFD diffusion problem, cell homogenized constants and current
correction coefficients are required. In this section, the cell homogenization and the
calculation of current correction coefficients are described first, and then the method for the
utilizing of the CMFD solution in the subsequent MOC transport calculation is established.
Note that the CMFD solution would accelerate the convergence of the fission and scattering



source terms in the MOC calculation.

3.1 Cell Homogenized Multi-Group Constants and Multi-Group CMFD Calculation

The cell homogenized multi-group constants can be calculated from the heterogeneous
regional cross-sections and scalar fluxes as follows:
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In the above equation, k
gφ  is the scalar flux of region k that is determined from the MOC

transport calculation.
The current correction coefficient can be calculated from the cell surface average current,

cell average fluxes and cell homogenized diffusion constant by:
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where i
gD

~
 is the nodal coupling coefficient determined in the ordinary finite difference

method and i
gj  the cell surface average current determined from the MOC transport result by:
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With the cell homogenized group constants and the current correction coefficients defined
above, multigroup CMFD calculations can be performed and the result of the CMFD
calculation will be cell average scalar fluxes. Since the subsequent MOC transport calculation



requires updated regional scalar fluxes and core boundary angular fluxes from the CMFD
calculation, the regional scalar fluxes are updated by using the previous shape, namely:
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where l is the iteration index. Similarly, the angular fluxes at the core boundaries can be
updated by:
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3.2 Two-Group Constants and Two-Group CMFD Calculation

The two-group based CMFD formulation is well-established in the nodal diffusion code as
MASTER8 or PARCS3, and successfully applied to accelerate multi-group diffusion
calculation.9 A two-group CMFD formulation is thus employed here to accelerate the multi-
group CMFD solution.

The two-group constants are simply calculated using multi-group constants and multi-
group spectra as follows:
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where G is the energy group index in the two-group CMFD equation and i
gf  is the neutron

spectrum which is defined as:
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To calculate the current correction coefficient, condensed two-group surface currents are
required, which can be calculated using the results of the multi-group CMFD calculation. The
multi-group surface currents are determined from the multi-group CMFD solution by:
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Then the condensed two-group surface currents are calculated by summing the multi-group
currents as:
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In the calculation of the two-group current correction coefficients, Eq. (6) is used as in the
multi-group case.

Once a two-group CMFD solution is obtained, the multi-group scalar fluxes have to be
established by prolongation of the two-group scalar fluxes. The prolongation can be achieved
simply by multiplying the two-group scalar fluxes and the multi-group spectrum of Eq. (12).

4. Iterative Algorithm of Pin-Cell Based CMFD and MOC Method

Fig 1. shows the iteration algorithm to obtain a converged solution in the pin-cell CMFD
accelerated MOC method. First, the homogenized multi-group cross sections for all cells and
current correction coefficients at cell interfaces are calculated. The two-group cross sections
and current correction coefficients are determined from the multi-group cross sections and
multi-group corrective coupling coefficients by using the multi-group spectra. The CMFD
calculation begins from the two-group calculation and moves to the multi-group calculation if
the error reduction criteria are satisfied. The multi-group CMFD calculation continues until
the error reduction is satisfied or the number of iterations meets the user input. After the
multi-group CMFD calculation is completed, the need for an MOC transport update is
determined using the two-group CMFD error reduction. The alternate two-group and multi-
group CMFD calculations continue until the error reduction condition on the MOC update is
met. In general, about 3 or 4 alternate CMFD iterations are required to advance to the MOC
transport calculation. This is because the error reduction criterion for the MOC update is
tighter than that of the multi-group CMFD calculation.

If the flag for advancing to the MOC transport calculation is turned on, the multi-group
scalar fluxes for heterogeneous cells and multi-group angular fluxes at the core boundaries
are updated using Eqs. (8) and (9). The fission sources are then calculated at all regions using
the updated multi-group scalar fluxes. One MOC transport calculation is completed by
performing ray tracing once or twice - twice for the first two iterations. The ray tracing is
performed for each group given the fission and scattering sources. In the group sweep, one or
two up-scattering iterations are performed - two for the first 4 ray tracings. During the ray
tracing, the contribution of each ray to the incoming and outgoing partial currents at the cell
interfaces is accumulated for the calculation of the current correction coefficients. After the
MOC transport calculation is finished, the new fission sources are calculated at all regions
and the overall convergence is checked using the fission sources. If the convergence is not
met, another pin-cell based CMFD calculation is invoked.
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Figure 1. Iterative Algorithm of Two-Level CMFD Accelerated MOC Method

5. Performance Examination

In order to examine the convergence characteristics of the pin-cell based CMFD
formulation, DeCART is applied to three test problems: an assembly problem with reflective
boundary condition, KAIST benchmark problem 2A10 and a realistic quarter core problem
with 81 assemblies. The performance of the CMFD acceleration is compared against the
power iteration using Chebyshev two-parameter extrapolation and pin-cell based CMR
acceleration. The fuel, burnable absorber, control rod and guide tube cells are divided into 48
regions, and baffle and reflector cells are divided into 4 regions. In this examination, the 7-
group cross section sets of KAIST benchmark problem 2A are used. To examine the



convergence characteristics, a reference solution is generated for each problem with a very
tight convergence criterion and the error of each iterate is calculated as the difference from
the reference solution.

5.1 Assembly Problem

The assembly problem is for the MOX fuel assembly with 8 burnable absorber rods. The
user input values for the number of azimuthal angles on 180 degree and ray spacing are 16
and 0.3 mm, respectively. Figure 2 shows the fission source error reduction behavior with the
MOC ray tracing numbers. The number of the CMFD accelerated ray tracings is only 7,
which is about 2.5 times and 6 times fewer than that of the CMR accelerated ray tracing and
the Chebyshev extrapolated power iteration, respectively. As shown in Table 1, the reduction
in the number of ray tracings is reflected in the computing time. The CMFD case is about 2
times faster than the CMR case.

5.2 KAIST Benchmark Problem 2A

The core of the KAIST benchmark problem is composed of various fuel assemblies
including MOX and uranium fuel assemblies. The user input values for the number of
azimuthal angles and ray spacing are 8 and 0.3 mm, respectively. Figure 3 shows the fission
source error reduction behavior. The number of the CMFD case is 9, which is about 2.5 times
and 10 times fewer than that of the CMR and the Chebyshev cases, respectively. Table 1
shows the computational time breakups. The saving in the computing time is also about two
as in the assembly problem.

5.3 Realistic Core Problem

This problem is to examine the applicability of the MOC whole core calculation to the
realistic core. The quadrant core is constructed with 52 fuel and 29 reflector assemblies. The
fuel assemblies are selected from the KAIST benchmark 2A problem. Figure 4 shows the fuel
loading pattern of this problem. The user input values for the number of azimuthal angles and
ray spacing are 8 and 0.3 mm, respectively. As shown in Figure 5, the error reduction
characteristic of the CMFD case is superior compared to the CMR and Chebyshev cases. The
number of ray tracings is only 9 in the CMFD case, resulting in reduction factors of 3 and 55
for the CMR and the Chebyshev cases, respectively. The reduction in the computing time by
a factor of 2.5 is remarkable in this realistic problem.

6. Conclusion

In this paper, the well-established CMFD formulation is applied to the whole-core MOC
transport calculation. The computational results show that the CMFD formulation reduces the
number of ray tracings by a factor of 6-55 compared with the Chebyshev two-parameter
extrapolation and 2-3 compared with the CMR acceleration method. Consequently, the



CMFD formulation provides a speedup of 2.5 in computing time over the CMR acceleration
method. These results indicate that the CMFD acceleration is very effective in whole core
MOC transport calculations.
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Table 1. Computational Time Breakup( 1 GHz PENTIUM III PC, sec )

Chebyshev Extrap. CMR Acceleration CMFD AccelerationProb.
MOC(Nt)* Total MOC(Nt) CMR Total MOC(Nt) CMFD Total

Assy. 172.6(41) 174.9 81.5(17) 1.4 84.2 39.3(7) 0.6 40.9

KAIST 11303(305) 11511 903(22) 91 1007 417(9) 47 472

PWR 82631(515) 84031 4994(28) 494 5535 1832(9) 131 2003

* The Total Number of MOC Iterations
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Figure 2. Fission Source Errors for Assembly Problem
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Figure 3. Fission Source Errors for KAIST Benchmark Problem 2A
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Figure 4. Fuel Loading Pattern for Realistic Core Problem
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Figure 5. Fission Source Errors for Realistic Core Problem
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